Skip to main content
Log in

The interception and wash-off fraction of 7Be by bean plants in the context of its use as a soil radiotracer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In soil redistribution studies employing 7Be, the radionuclide inventories and their spatial uniformity in soil can be influenced by the crop coverage conditions. A relatively high 7Be interception factor, normalized to the leaf area index (LAI), of 0.61 ± 0.08 (LAI value 0.87 ± 0.06) was determined after 0.4 mm precipitation. After a second 7.2 mm rainfall, the interception factor had a value of 0.36 ± 0.04, for 0.30 ± 0.02 LAI value. Wash-off experiments with deionized water showed that the released 7Be fraction was limited within a range of 29–37 % of the initial concentration of leaf deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. BIPM (2011) Table of Radionuclides, Monographie BIPM-5. Bureau International des Poids et Mesures, Sèvres. http://www.nucleide.org/DDEP_WG/DDEPdata.htm. Accessed May 2014

  2. Brost RA, Feichter J, Heimann M (1991) 3-dimensional simulation of Be-7 in a global climate model. J Geophys Res-Atmos 96(D12):22423–22445

    Article  Google Scholar 

  3. Kikuchi S, Sakurai H, Gunji S, Tokanai F (2009) Temporal variation of 7Be concentrations in atmosphere for 8y from 2000 at Yamagata, Japan: solar influence on the 7Be time series. J Environ Radioact 100(6):515–521

    Article  CAS  Google Scholar 

  4. Talpos S, Rimbu N, Borsan D (2005) Solar forcing on the 7Be-air concentration variability at ground level. J Atmos Sol-Terr Phys 67(16):1626–1631

    Article  Google Scholar 

  5. Feely HW, Larsen RJ, Sanderson CG (1989) Factors that cause seasonal variations in Beryllium-7 concentrations in surface air. J Environ Radioact 9(3):223–249

    Article  CAS  Google Scholar 

  6. Ioannidou A, Manolopoulou M, Papastefanou C (2005) Temporal changes of 7Be and 210Pb concentrations in surface air at temperate latitudes (40º N)’. Appl Radiat Isot 63(2):277–284

    Article  CAS  Google Scholar 

  7. Ioannidou A, Papastefanou C (2006) Precipitation scavenging of 7Be and 137Cs radionuclides in air. J Environ Radioact 85(1):121–136

    Article  CAS  Google Scholar 

  8. Doering C, Akber R (2008) Beryllium-7 in near-surface air and deposition at Brisbane Australia. J Environ Radioact 99(3):461–467

    Article  CAS  Google Scholar 

  9. Wallbrink PJ, Murray AS (1994) Fallout of 7Be in South Eastern Australia. J Environ Radioact 25:213–228

    Article  CAS  Google Scholar 

  10. Ayub JJ, Di Gregorio DE, Velasco H, Huck H, Rizzotto M, Lohaiza F (2009) Short-term seasonal variability in 7Be wet deposition in a semiarid ecosystem of central Argentina. J Environ Radioact 100(11):977–981

    Article  Google Scholar 

  11. Taylor A, Blake WH, Smith HG, Mabit L, Keith-Roach MJ (2013) Assumptions and challenges in the use of fallout beryllium-7 as a soil and sediment tracer in river basins. Earth-Sci Rev 126:85–95

    Article  CAS  Google Scholar 

  12. Blake WH, Walling DE, He Q (1999) Fallout beryllium-7 as a tracer in soil erosion investigations. Appl Radiat Isot 51:599–605

    Article  CAS  Google Scholar 

  13. Matisoff G, Bonniwell EC, Whiting PJ (2002) Soil erosion and sediment sources in an Ohio Watershed using Beryllium-7, Cesium-137 and Lead-210. J Environ Qual 31:54–61

    Article  CAS  Google Scholar 

  14. Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J Environ Radioact 99:1799–1807

    Article  CAS  Google Scholar 

  15. Walling DE, Schuller P, Zhang Y, Iroumé A (2009) Extending the timescale for using beryllium-7 measurements to document soil redistribution by erosion. Water Resour 45(2):W02418. doi:10.1029/2008WR007143

    Google Scholar 

  16. Porto P, Walling DE (2014) Use of 7Be measurements to estimate rates of soil loss from cultivated land: testing a new approach applicable to individual storm events occurring during an extended period. Water Resour Res 50(10):8300–8313

    Article  CAS  Google Scholar 

  17. Walling DE, Zhang Y, He Q (2011) Models for deriving estimates of erosion and deposition rates from fallout radionuclide (caesium-137, excess lead-210 and beryllium-7) measurements and the development of user-friendly software for model implementation. In: Impact of soil conservation measures on erosion control and soil quality, IAEA-TECDOC-1665 IAEA, Vienna, pp 11–33

  18. Bettoli MG, Cantelli L, Degetto S, Tositti L, Tubertini O, Valcher S (1995) Preliminary investigations on 7Be as a tracer in the study of environmental processes. J Radioan Nucl Chem 190(1):137–147

    Article  CAS  Google Scholar 

  19. Wallbrink PJ, Murray AS (1996) Distribution and variability of 7Be in soils under different surface cover conditions and its potential for describing soil redistribution processes. Water Resour Res 32:467–476

    Article  CAS  Google Scholar 

  20. Doering C, Akber R, Heijnis H (2006) Vertical distributions of 210Pb excess, 7Be and 137Cs in selected grass covered soils in Southeast Queensland, Australia. J Environ Radioact 87:135–147

    Article  CAS  Google Scholar 

  21. Pöschl M, Brunclík T, Hanák J (2010) Seasonal and inter-annual variation of Beryllium-7 deposition in birch-tree leaves and grass in the northeast upland area of the Czech Republic. J Environ Radioact 101:744–750

    Article  Google Scholar 

  22. Zhang F, Yang M, Zhang B (2011) Beryllium-7 activity concentration in plants on the Loess Plateau, China. J Radioanal Nucl Chem 289:353–359

    Article  CAS  Google Scholar 

  23. Pröhl G (2009) Interception of dry and wet deposited radionuclides by vegetation. J Environ Radioact 100:675–682

    Article  Google Scholar 

  24. Dueñas C, Fernández MC, Carretero J, Liger E, Cañete S (2005) Deposition velocities and washout ratios on a coastal site (southeastern Spain) calculated from 7Be and 210Pb measurements. Atmos Environ 39:6897–6908

    Article  Google Scholar 

  25. Simon J, Meresova J, Sykora I, Jeskovsky M, Holy K (2009) Modeling of temporal variations of vertical concentration profile of 7Be in the atmosphere. Atmos Environ 43:2000–2004

    Article  CAS  Google Scholar 

  26. Mabit L, Meusburger K, Iurian AR, Owens PN, Toloza A, Alewell C (2014) Sampling soil and sediment depth profiles at a fine resolution with a new device for determining physical, chemical and biological properties: the Fine Increment Soil Collector (FISC). J Soils Sediments 14:630–636

    Article  CAS  Google Scholar 

  27. Piton F, Lépy M-C, Bé M-M, Plagnard J (2000) Efficiency transfer and coincidence summing corrections for γ-ray spectrometry. Appl Radiat Isot 52(3):791–795

    Article  CAS  Google Scholar 

  28. Korun M, Kovačič K, Vodenik B (2010) Probability for Type I errors in gamma-ray spectrometric measurements of drinking water samples. J Radioanal Nucl Chem 286:553–556

    Article  CAS  Google Scholar 

  29. JCGM (2008) Evaluation of measurement data—Guide to the expression of uncertainty in measurement (GUM 1995 with Minor Corrections), 100:2008 Joint Committee for Guides in Metrology http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. Accessed May 2014

  30. ISO (2010) Determination of characteristic limits (decision threshold, detection limit, and limits of the confidence interval) for measurements of ionizing radiation—fundamentals and applications. International Organization for Standardization, Geneva (ISO11929:2010)

    Google Scholar 

  31. Anspaugh LR, Simon SL, Gordev KI, Likhtarev IA, Maxwell RM, Shinkarev SI (2002) Movement of radionuclides in terrestrial ecosystems by physical processes. Health Phys 82:669–679

    Article  CAS  Google Scholar 

  32. Madoz-Escande C, Henner P, Bonhomme T (2004) Foliar contamination of Phaseolus vulgaris with aerosols of 137Cs, 85Sr, 133Ba and 123mTe: influence of plant development stage upon contamination and rain. J Environ Radioact 73:49–71

    Article  CAS  Google Scholar 

  33. Madoz-Escande C, Garcia-Sanchez L, Bonhomme T, Morello M (2005) Influence of rainfall characteristics on elimination of aerosols of cesium, strontium, barium and tellurium deposited on grassland. J Environ Radioact 84:1–20

    Article  CAS  Google Scholar 

  34. Strebl F, Ehlken S, Gerzabek MH, Kirchner G (2007) Behaviour of radionuclides in soil/crop systems following contamination. Radioact environ. doi:10.1016/S1569-4860(06)10002-9

    Google Scholar 

  35. Papandreou SMA, Savva MI, Karfopoulos KL, Karangelos DJ, Anagnostakis MJ, Simopoulos SE (2011) Monitoring of 7Be atmospheric activity concentration using short term measurements. Nucl Technol Radiat 26(2):101–109

    Article  CAS  Google Scholar 

  36. Voigt G, Müller H, Pröhl G (1991) Experiments on the seasonality of the cesium translocation in cereals, potatoes and vegetables. Radiat Environ Biophys 30:295–303

    Article  CAS  Google Scholar 

  37. Bréda NJJ (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54(392):2403–2417

    Article  Google Scholar 

  38. Kaste JM, Elmore AJ, Vest KR, Okin GS (2011) Beryllium-7 in soils and vegetation along an arid precipitation gradient in Owens Valley California. Geophys Res Lett 38:L09401

    Google Scholar 

  39. Zhang F, Yang M, Zhang B (2012) Beryllium-7 activity concentration in maize during the growth period. J Radioanal Nucl Chem 292:75–79

    Article  CAS  Google Scholar 

  40. Taylor A, Blake WH, Couldrick L, Keith-Roach MJ (2012) Sorption behaviour of beryllium-7 and implications for its use as a sediment tracer. Geoderma 187–188:16–23

    Article  Google Scholar 

  41. Shi Z, Wen A, Ju L, Yan D (2013) A modified model for estimating soil redistribution on grassland by using 7Be measurements. Plant Soil 362:279–286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is a follow-up contribution to the IAEA Coordinated Research Project D.1.20.11: ‘Integrated isotopic approaches for an area-wide precision conservation to control the impacts of agricultural practices on land degradation and soil erosion’. The authors acknowledge the support provided by Mr. Minh-Long Nguyen and Mr. Manfred Groening at the different stages of the project. The help of Mr. Arsenio Toloza during sample collection and handling is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andra-Rada Iurian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iurian, AR., Dercon, G., Adu-Gyamfi, J. et al. The interception and wash-off fraction of 7Be by bean plants in the context of its use as a soil radiotracer. J Radioanal Nucl Chem 306, 301–308 (2015). https://doi.org/10.1007/s10967-015-3948-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-3948-1

Keywords

Navigation