Skip to main content

Radionuclide Uptake from Soil to Plants: Influence of Soil Classification

  • Chapter
  • First Online:
Radionuclide Contamination and Remediation Through Plants

Abstract

The entry of trace contaminants, which are present in the terrestrial environment, into human food chains is controlled in the long term by their uptake by plant roots. The radionuclides released into the environment can give rise to human exposure by the transport through the atmosphere, through aquatic systems, or through soil subcompartments. Soil-to-plant factor is one of the important parameters to be used in transfer models for predicting the concentration of radionuclides in crops/plants and for estimating dose impacts to man. Existing databases are limited to experimental values in a restricted number of soil systems and are largely comprised of temperate environment data. In general, transfer factors show a large degree of variation dependent upon several factors such as soil type, species of plants, and other environmental conditions. Soil-to-plant transfers of the radionuclides varied considerably with the times of deposition also. In general, the variations with the deposition times were by a factor of up to 10. This chapter describes a review of published data on the transfer factor (TF) and classification of soils based on TFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarkrog A (1994) Nordic radioecology: the transfer of radionuclides through Nordic ecosystems to man. In: Dahlgaard H (ed) Direct contamination-seasonality (studies in Environmental Science 62). Elsevier, Amsterdam

    Google Scholar 

  • Abbazov MA, Dergunov ID, Mikulin RG (1978) Effect of soil properties on the accumulation of 90Sr and 137Cs in crops. Soviet Soil Sci 10:52–56

    Google Scholar 

  • Absalom JP, Young SD, Crout NMJ, Nisbet AF, Woodman RFM, Smolders E, Gillett AG (1999) Predicting soil to plant transfer of radiocesium using soil characteristics. Environ Sci Technol 33:1218–1223

    Article  CAS  Google Scholar 

  • Absalom JP, Young SD, Crout NMJ, Sanchez A, Wright SM, Smolders E, Nisbet AF, Gillett AG (2001) Predicting the transfer of radiocesium from organic soils to plants using soil characteristics. J Environ Radioact 52:31–43

    Article  CAS  PubMed  Google Scholar 

  • Andersen AJ (1967) Investigations on the plant uptake of fission products from contaminated soils. I. Influence of plant species and soil types on the uptake of radioactive strontium and cesium. Report 170, Riso National Laboratory, Roskilde, Denmark

    Google Scholar 

  • Askbrant S, Sandalls J (1998) Root uptake of 137Cs and 90Sr by rye-grass on various soils in the CIS. J Environ Radioact 38:85–95

    Article  CAS  Google Scholar 

  • Baeza AJ, Guillen J (2006) Influence of the soil bioavailability of radionuclides on the transfer of uranium and thorium to mushrooms. Appl Radiat Isotop 64:1020–1026

    Article  CAS  Google Scholar 

  • Baeza A, Hernández S, Guillén FJ, Moreno G, Manjón JL, Pascual R (2004) Radiocesium and natural gamma emitters in mushrooms collected in Spain. Sci Total Environ 318:59–71

    Google Scholar 

  • Baeza AJ, Guillen J, Mietelski JW, Gaca P (2006) Soil-to-fungi transfer of 90Sr, 239+240Pu, and 241Am. Radiochim Acta 94:75–80

    Article  CAS  Google Scholar 

  • Blanco Rodriguez P, Vera Toma F, Perez Fernandez M, Lozano JC (2006) Linearity assumption in soil-to-plant transfers of natural uranium and radium in Helianthas annuus L. Sci Total Environ 361:1–7

    Article  PubMed  Google Scholar 

  • Bunzl K (1997) Radionuklide. In: Blume HP, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (eds) Handbuch der Bodenkunde. Ecomed Landberg/Lech, Germany

    Google Scholar 

  • Bunzl K, Kracke W (1989) Seasonal variation of soil-to-plant transfer of K and fallout 134,137Cs in peatland vegetation. Healt Phys 57:593–600

    Article  CAS  Google Scholar 

  • Bunzl K, Albers BP, Schimmack W, Belli M, Ciuffo L, Menegon S (2000) Examination of a relationship between Cs-137 concentrations in soils and plants from alpine pastures. J Environ Radioact 48:145–158

    Article  CAS  Google Scholar 

  • Champlin JBF, Eichholz GG (1967) Fixation and remobilization of trace contaminants in simulated sub-surface aquifers. J Health Phy 30:215–219

    Article  Google Scholar 

  • Chen SB, Zhu YG, Hu QH (2005) Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. J Environ Radioact 82:223–236

    Article  CAS  PubMed  Google Scholar 

  • Chiu CY, Lai SY, Wang CJ, Lin YM (1999) Transfer of 137Cs from soil to plants in a wet montane forest in subtropical Taiwan. J Radioanal Nuc Chem 239:511–515

    Article  CAS  Google Scholar 

  • Choi YH, Lee CW, Kim SR, Lee JH, Jo JS (1998) Effect of application time of radionuclides on their root uptake by Chinese Cabbage and Radish. J Environ Radioact 39:183–198

    Article  CAS  Google Scholar 

  • Choi YH, Lim KM, Park HG, Park DW, Kang HS, Lee HS (2005) Transfer of 137Cs to rice plants from various paddy soils contaminated under flooded conditions at different growth stages. J Environ Radioact 80:45–58

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, Lim KM, Jun I, Park DW, Keum DK, Lee CW (2009) Root uptake of radionuclides following their acute soil depositions during the growth of selected food drops. J Environ Radioact 100:746–751

    Article  CAS  PubMed  Google Scholar 

  • Cremers A, Elsen A, De Preter P, Maes A (1988) Quantitative analysis of radiocesium retention in soils. Nature 335:247–249

    Article  CAS  Google Scholar 

  • D’Souza TJ, Mistry KB (1979) Uptake and distribution of gamma-emitting activation products 59Fe, 58Co, 54Mn and 65Zn in plants. Environ Exp Bot 19:193–200

    Article  Google Scholar 

  • Deb DL, Sachdev MS, Sachdev P (2004) Transfer factors of radionuclides 137Cs, 90Sr and 65Zn from soil to plants. In: Transfer of radionuclides from air, soil and freshwater to the food chain of man in tropical and subtropical environments. IAEA TECDOC XXXX, pp 21–29

    Google Scholar 

  • Desmet G, Nassimbeni P, Belli M (1990) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London

    Google Scholar 

  • Desmet GM, van Loon LR, Howard BJ (1991) Chemical speciation and bioavailability in the environment and their relevance to radioecology. Sci Total Environ 100:105–124

    Article  CAS  PubMed  Google Scholar 

  • Djingova R, Kuleff I (2002) Concentration of Cs-134, Cobalt-60 and Potassium-40 in some wild and edible plants around the nuclear power plant in Bulgaria. J Environ Radioact 59:61–71

    Article  CAS  PubMed  Google Scholar 

  • Djingova R, Kovacheva P, Todorov B, Zlateva B, Kuleff I (2005) On the influence of soil properties on the transfer of 137Cs from two soils (Chromic Luvisol and Eutric Fluvisol) to wheat and cabbage”. J Environ Radioact 82:63–79

    Article  CAS  PubMed  Google Scholar 

  • Djuric D, Popovic D, Todorovic D (1996) Activity variations concentration factors for natural radionuclides in a soil-plant-honey system. Environ Inter 22:361–363

    Article  Google Scholar 

  • D'Souza TJ, Mistry KB (1970) Comparative uptake of Thorium-230, Radium-226, Lead-210 and Polonium-210 by plants. Radiat Bot 10:293–295

    Article  Google Scholar 

  • Duškesas G (2009) Study of the nuclide inventory of operational radioactive waste for the RBMK-1500 reactor. Nuc Engg Des 239:813–818

    Article  Google Scholar 

  • Ehlken S, Kircher G (2002) Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J Environ Radioact 58:97–112

    Article  CAS  Google Scholar 

  • Eisenbud M (1973) Environmental radioactivity. Academic Press, New York

    Google Scholar 

  • Fortunati P, Brambilla M, Speroni F, Carini F (2004) Foliar uptake of 134Cs and 85Sr in strawberry as function by leaf age. J Environ Rad 71:187–199

    Article  CAS  Google Scholar 

  • Foth HD (1978) Fundamentals of soil science. Wiley, New York

    Google Scholar 

  • Frissel MJ (1992) An update of the recommended soil-to-plant transfer factors of 90Sr, 137Cs and transuranics. In: VIIIth report of the working group soil-to-plant transfer factors, IUR. www.iur-uir.org

  • Frissel M, Noordijk H, van Bergeijk KE (1990) The impact of extreme environmental conditions, as occurring in natural ecosystems, on the soil-to-plant transfer of radionuclides. In: Desmet G, Nasimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London

    Google Scholar 

  • Frissel MJ, Deb DL, Fathony M, Lin YM, Mollah AS, Ngo NT, Othman I, Robinson WL, Skarlou-Alexiou V, Topcuoglu S, Twining JR, Uchida S, Wasserman MA (2002) Generic values for soil-to-plant transfer factors of radiocesium. J Environ Radioact 58:113–128

    Article  CAS  PubMed  Google Scholar 

  • Gerzabek MH, Strebl F, Temmel B (1998) Plant uptake of radionuclides in lysimeter experiments. Environ Pollut 99:93–103

    Article  CAS  PubMed  Google Scholar 

  • Hanlon EA (1994) Naturally occurring radionuclides in agricultural products: an overview. J Environ Qual 23:630–632

    Article  CAS  Google Scholar 

  • Haylock RGE (1999) Recommended soil-to-plant transfer factors for radiocesium and radiostrontium for use in arable systems. NRPB, Chilton, Didcot

    Google Scholar 

  • Higley KA, Bytwerk DP (2007) Generic approaches to transfer. J Environ Radioact 98:4–23

    Article  CAS  PubMed  Google Scholar 

  • Hird AB, Rimmer DL, Livens FR (1996) Factors affecting the sorption and fixation of cesium in acid organic soils. Europ J Soil Sci 47:97–104

    Article  CAS  Google Scholar 

  • Hoffman FO, Bergstrom U, Gyllander C, Wilkens AB (1984) Comparison of predictions from internationally recognized assessment models for the transfer of selected radionuclides through terrestrial food chains. Nucl Saf 25:533–546

    CAS  Google Scholar 

  • Howard BJ, Desmet G (1993) Relative effectiveness of agricultural countermeasure techniques (special issue). Sci Total Environ 137:1–315

    Article  Google Scholar 

  • IAEA (1982) Generic models and parameters for assessing the environmental transfer of radionuclides from routine releases. IAEA, Safety series no. 57, Vienna

    Google Scholar 

  • IAEA (1994) Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Technical report series no. 364, IAEA

    Google Scholar 

  • IAEA (1999) The classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants. A FAO/IAEA/IUR Coordinated Research Programme, International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2000) International Atomic Energy Agency, regulatory control of radioactive discharges to the environment, Safety standards no. WS-G-2.3, IAEA, Vienna

    Google Scholar 

  • IAEA (2001) International Atomic Energy Agency, generic models for use in assessing the impact of discharges of radioactive substances, IAEA safety reports series no. 19, Vienna

    Google Scholar 

  • IAEA (2004) International Atomic Energy Agency, sediments and concentration factors for radionuclide in the marine environment, Technical reports series no. 422, IAEA, Vienna

    Google Scholar 

  • IAEA (2006) Classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants. In: Proceedings of a final research coordination meeting organized by the Joint FAO/IAEA programme of nuclear techniques in food and agriculture and held in Chania, Crete. IAEA-TECDOC-1497, 22–26 Sept 2003

    Google Scholar 

  • IAEA (2009) Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. IAEA-TECDOC-1616. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical reports series no. 472. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IUR (1989) International Union of Radioecologists: VIth annual report of the working group on soil-to-plant transfer. Published by RIVM, Bilthoven

    Google Scholar 

  • IUR (1992) IUR databank. Collection of about 3000 Cs and Sr transfer values. Electronic copies available form IUR

    Google Scholar 

  • Jacobson E, Overstreet R (1998) The uptake by plants of plutonium and some products of nuclear fission adsorbed on soil colloids. Soil Sci 651:129–134

    Google Scholar 

  • Jang BC, Hong YP, Park ME (2004) Absorption and accumulation of 85Sr by rice plants and soil-to-plant transfer factors in Korea. In: Transfer of radionuclides from air, soil and freshwater to the food chain of man in tropical and subtropical environments. IAEA TECDOC XXXX, pp 30–34

    Google Scholar 

  • Juo ASR, Barber SA (1970) The retention of strontium by soils as influenced by pH, organic matter and saturation cations. Soil Sci 109:143–148

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2004) Soil-plant transfer of trace elements—an environmental issue. Geoderma 122:143–149

    Article  CAS  Google Scholar 

  • Khan HM, Chaudhry ZS, Ismail M, Khan K (2010) Assessment of radionuclides, trace metals and radionuclide transfer from soil to food of Jhangar Valley (Pakistan) using Gamma-Ray Spectrometry. Water Air Soil Pollut 213:353–362

    Article  CAS  Google Scholar 

  • Kritidis P, Kollas G (1992) Individual and social risk due to natural and artificial environmental radioactivity in Greece. Radiat Prot Dosim 45:673–675

    CAS  Google Scholar 

  • Kuhn W, Handl J, Schuller P (1984) The influence of soil parameters on 137Cs uptake by plants from long-term fallout on forest clearings and grassland. Health Phys 46:1083–1093

    Article  CAS  PubMed  Google Scholar 

  • Livens FR, Horrill AD, Singleton DL (1991) Distribution of radiocesium in the soil-plant systems of upland areas of Europe. Health Phys 60:539–545

    Article  CAS  PubMed  Google Scholar 

  • Lorenz SE, Hamon RE, McGrath SP (1994a) Differences between soil solutions obtained from rhizosphere and non-rhizosphere soils by water displacement and soil centrifugation. Europ J Soil Sci 45:431–438

    Article  CAS  Google Scholar 

  • Lorenz SE, Hamon RE, McGrath SP, Holm PE, Christensen TH (1994b) Applications of fertilizer cations affect cadmium and zinc concentrations in soil solutions and uptake by plants. Europ J Soil Sci 45:159–165

    Article  CAS  Google Scholar 

  • MacKenzie A (2000) Environmental radioactivity: experience from the 20th century–trends and issues for the 21st century. Sci Total Environ 249:313–329

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Aguirre A, Garcia Leon M (1996) Transfer of natural radionuclides from soils to plants in a wet marshland. Appl Radiat Isotop 47:1103–1108

    Article  CAS  Google Scholar 

  • Massas I, Skarlou V, Haidouti C (2002) Plant uptake of 134Cs in relation to soil properties and time. J Environ Radioact 59:245–255

    Article  CAS  PubMed  Google Scholar 

  • Missaelidis P, Sikalidis C, Tsitouridou R, Alexiadis C (1987) Distribution of fission products in dust samples in Thessaloniki. Greece Environ Pollut 47:1–8

    Article  Google Scholar 

  • Mollah AS, Begum A (2001) A study on transfer factors of 60Co and 65Zn from soil to plants in the tropical environment of Bangladesh. Environ Monit Assess 68:91–97

    Article  CAS  PubMed  Google Scholar 

  • Mollah AS, Begum A, Ullah SM (1998) Determination of soil-to-plant transfer factors of 137Cs and 90Sr in the tropical environment of Bangladesh. Radiat Environ Biophys 37:125–128

    Article  CAS  PubMed  Google Scholar 

  • Mollah AS, Begum A, Ullah SM, Khan ZH (2004) Studies on radionuclide transfer from soil and freshwater to the foodchain of man in tropical environment of Bangladesh. In: Transfer of radionuclides from air, soil and freshwater to the food chain of man in tropical and subtropical environments. IAEA TECDOC XXXXX, pp 44–51

    Google Scholar 

  • Mortvedt JJ (1994) Plant and soil relationships of uranium and thorium decay series radionuclides—a review. J Environ Qual 23:643–650

    Article  CAS  Google Scholar 

  • Mück K (1997) Long-term decrease of cesium concentration in foodstuffs after nuclear fallout. Health Phys 72:659–673

    Article  PubMed  Google Scholar 

  • Ng YC, Colshier CS, Thompson S E (1982) Soil-to plant concentration factors for radiological assessments. Lawrence Livermore National Laboratory, UCID-19463

    Google Scholar 

  • Nisbet AF, Shaw S (1994) Summary of a five-year lysimeter study on the time dependent transfer of 137Cs, 90Sr, 239,240Pu and 241Am to crops from three contrasting soil types. 2. Distribution between different plant parts. J Environ Radioact 23:171–187

    Article  CAS  Google Scholar 

  • Nisbet AF, Woodman RFM (2000) Soil-to-plant transfer factors for radiocesium and radiostrontium in agricultural systems. Health Phys 78:279–288

    Article  CAS  PubMed  Google Scholar 

  • Nisbet AF, Woodman RFM, Haylock RGE (1999) Recommended soil-to-plant transfer factors for radiocaesium and radiostrontium for use in arable systems. National Radiological Protection Board, Chilton, UK, Report NRPB-R304

    Google Scholar 

  • Noordijk H, van Bergeijk KE, Lembrechts J, Frissel MJ (1992) Impact of ageing and weather conditions on soil-to-plant transfer of radiocesium and radiostrontium. J Environ Radioact 5:277–286

    Article  Google Scholar 

  • Papanikolaou EP (1972) Radioactive fallout-plants and soil. Geoponica 208:224–229

    Google Scholar 

  • Peterson SR (1995) Testing the conservativeness of a screening model in a model validation exercise. Health Phys 68:539–545

    Article  CAS  PubMed  Google Scholar 

  • Pickering RJ, Carrigan PH, Tamuro T, Abee HH, Beverage JW, Andrew RWJr (1966) Radioactivity in bottom sediment of Clinch and Tennessee river. In: “Disposal of radioactive wastes into seas, oceans and surface water”, Proceeding symposium, IAEA, Vienna, pp 57–88

    Google Scholar 

  • Pietrzak-flis Z, Suplinska M (1995) Transfer of 232Th, 230Th, 228Th, 238U and 234U to plants via the root system and above-ground parts. In: Proceedings of an international symposium on the environmental impact of radioactive releases, IAEA, Vienna

    Google Scholar 

  • Popplewell DS, Ham GJ, Johnson TE, Stather JW, Sumner SA (1984) The uptake of 238,239,240Pu, 241Am, 90Sr and 137Cs into potatoes. Sci Total Environ 38:173–181

    Article  CAS  PubMed  Google Scholar 

  • Pulhani VA, Dafauti S, Hegde AG, Sharma RM, Mishra UC (2005) Uptake and distribution of natural radioactivity in wheat plants from soil. J Environ Radioact 79:331–346

    Article  CAS  PubMed  Google Scholar 

  • Remeikis V, Plukis A, Juodis L, Gudelis A, Lukauskas D, Druteikiené R, Lujaniené G, Lukšiené B, Plukiené R, Romney EM, Neel JW, Nishita H, Olafson JH, Larson KH (1957) Plant uptake of 90Sr, 91Y, 106Ru, 137Cs and 144Ce from soils. Soil Sci 83:369–376

    Article  Google Scholar 

  • Riise G, Bjornstad HE, Lien HN, Oughton DH, Salbu B (1990) A study of radionuclide association with soil components using a sequential extraction procedure. J Radioanal Nucl Chem 142:531–538

    Article  CAS  Google Scholar 

  • Robson AD, Pitman MG (1983) Interaction between nutrients in higher plants. In: Lauchli A, Bieleski RL (eds) Inorganic plant nutrition: encyclopedia of plant physiology, new series, vol 15A, B, Springer-Verlag, Berlin, pp 146–180

    Google Scholar 

  • Rosén K, Öborn I, Lönsjö H (1999) Migration of radiocesium in Swedish soil profiles after the Chernobyl accident 1987–1995. J Environ Radioact 46:45–66

    Article  Google Scholar 

  • Routson RC, Cataldo DA (1978) Accumulation of 99Tc by Tumbleweed and cheat grass grown on arid soils. Health Phys 48:685–690

    Article  Google Scholar 

  • Schuller P, Handl J, Ellies A (1998) Long-term decrease of atmospheric test 137Cs concentration in the soil prairie plant-milk pathway in Southern Chile. Health Phys 75:86–88

    Article  CAS  PubMed  Google Scholar 

  • Schuller P, Voigt G, Handl J, Ellies A, Oliva L (2002) Global weapons’ fallout 137Cs in soils and transfer to vegetation in south-central Chile. J Environ Radiat 62:181–193

    Google Scholar 

  • Shand CA, Cheshire MV, Smith S, Vidal M, Rauret G (1994) Distribution of radiocesium in organic soils. J Environ Radioact 23:285–302

    Article  CAS  Google Scholar 

  • Shaw G (2007) Radioactivity in the environment. Elsevier, Amsterdam

    Google Scholar 

  • Sheppard SC, Evenden WG (1988) Critical compilation and review of plant/soil concentration ratios for uranium, thorium and lead. J Environ Radioact 8:255–285

    Article  CAS  Google Scholar 

  • Sheppard SC, Evenden WG (1990) Characteristics of plant concentration ratios assessed in a 64-site field survey of 23 elements. J Environ Radioact 11:15–36

    Article  CAS  Google Scholar 

  • Sheppard SC, Evenden WG (1997) Variation in transfer factors for stochastic models: soil-to-plant transfer. Health Phys 72:727–733

    Article  CAS  PubMed  Google Scholar 

  • Sikalidis CA, Misaelides P, Alexiades CA (1988) Cesium selectivity and fixation by vermiculite in the presence of various competing cations. Environ Pollut 52:67–69

    Article  CAS  PubMed  Google Scholar 

  • Skarlou V, Papanicolaou EP, Nobeli C (1996) Soil to plant transfer of radioactive cesium and its relation to soil and plant properties. Geoderma 72:53–63

    Article  CAS  Google Scholar 

  • Skarlou V, Al-Oudat M, Juango L, Djingova RG, Prister B, Quang NH, Sachdev P, Sanzharova N, Schuller P, Robinson WL, Topcuoglu S, Twining JR, Uchida S, Wang T, Wasserman WA, Frissel MJ (2003) The classification of soils on the basis of the soil to plant transfer factor of Cs. 33rd ESNA-IUR, Viterbo, Italy, 27–31 Aug 2003

    Google Scholar 

  • Squire HM, Middleton LJ (1966) Behaviour of Cs137 in soils and pastures: a long-term experiment. Radiat Bot 6:413–423

    Article  CAS  Google Scholar 

  • Strebl F, Ehlken S, Gerzabek HM, Kirchner G (2007) Behaviour of radionuclides in soil/crop systems following contamination. In: Show G (ed) Radioactivity in the environment. Elsevier, Amsterdam

    Google Scholar 

  • Tome FV, Blanco MP, Lazano JC (2003) Soil to plant transfer factors for natural radionuclides and stable elements in a Mediterranean area. J Environ Radioact 65:161–175

    Article  Google Scholar 

  • UNFAO (1998) United Nations Food and Agriculture Organization, World reference base for soil resources, FAO, Rome

    Google Scholar 

  • UNSCEAR (2000) Sources and Effects of Ionising Radiation. United Nations Scientific Committee on the effects of atomic radiation report 2000 to the general assembly, Annex C and J, United Nations, New York

    Google Scholar 

  • Valcke E, Cremers A (1994) Sorption-desorption dynamics of radiocesium in organic matter soils. Sci Total Environ 157:275–283

    Article  CAS  Google Scholar 

  • Van Bergeijk EK, Noordijk H, Lembrechts J, Frissel MJ (1992) Influence of pH, soil type and soil organic matter content on soil-to-plant transfer of radiocesium and -strontium as analyzed by a nonparametric method. J Environ Radioact 15:265–276

    Article  Google Scholar 

  • Vandenhove H, Olyslaegers G, Sanzharova N, Shubina O, Reed E, Shang Z, Velasco H (2009) Proposal for new best estimates of the soil-to-plant transfer factor of U, Th, Ra, Pb and Po. J Environ Radioact 100:721–732

    Article  CAS  PubMed  Google Scholar 

  • Velasco H, Juri-Ayuba J, Sansone U (2008) Analysis of radionuclide transfer factors from soil to plant in tropical and subtropical environments. Appl Radiat Isotop 66:1759–1763

    Article  CAS  Google Scholar 

  • Voigt G, Howard JB, Beresford AN (2007) Transfer of radionuclides in animal production systems. In: Shaw G (ed) Radioactivity in the environment. Elsevier, Amsterdam

    Google Scholar 

  • Wallace A (1989) Effect of limingon trace-element interactions in plants. Soil Sci 147:416–421

    Article  CAS  Google Scholar 

  • Yamamoto MS, Yamamori S, Komura Κ, Sakanoue M (1996) Distribution and behaviour of transuranium elements in paddy surface soil. In: Frissel MJ, Brown RM, Uchida S (eds) Proceedings international workshop on improvement of environmental transfer models and parameters. Japan, pp 198–206

    Google Scholar 

  • Yunoki E, Kataoka T, Michiro K, Sugiyama H, Shimizu M, Mori T (1993) Activity concentrations of 238U and 226Ra in agricultural samples. J Radioanal Nucl Chem 174:223–228

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdus Sattar Mollah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mollah, A.S. (2014). Radionuclide Uptake from Soil to Plants: Influence of Soil Classification. In: Gupta, D., Walther, C. (eds) Radionuclide Contamination and Remediation Through Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-07665-2_3

Download citation

Publish with us

Policies and ethics