Skip to main content
Log in

Water chemistry and radon concentrations of thermal springs in Bastak area, south of Persia

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Physicochemical factors, major and some minor ions and 222Rn concentration was measured in Todruyeh, Fotuyeh and Sanguyeh thermal balneutherapy springs in Bastak, south of Iran. Water type of these springs is Na–Cl and water-mixing phenomena seem possible in them. The average of U concentration in Fatuyeh’s, Sanguyeh’s and Todruyeh’s water are 2.2, 1.1, 0.306 ppb, respectively, and the concentration of heavy metals such as Ag, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, Zn varies from 1 to 10 ppb. The concentration of 222Rn in the water of Fotuyeh, Sanguyeh and Todruyeh Springs includes 125–253, 53–104, and 7.4–134.7 kBq/m3, respectively. Values of mean annual effective doses for inhalation from these waters are below the reference level recommended by WHO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mazor E, Verhagen B (1976) Hot springs of Rhodesia: their noble gases, isotopic and chemical composition. J Hydrol 28:29–43

    Article  CAS  Google Scholar 

  2. Honda T, Oi T, Ossaka T, Nozaki T, Kakihana H (1989) Determination of rare earth elements in hot spring and crater lake waters by epithermal neutron activation analysis. J Radioanal Nucl Chem 133(2):301–315

    Article  CAS  Google Scholar 

  3. Gigenbach WF, Glover RB (1992) Tectonic regime and major process governing the chemistry of water and gas discharges from the Rotorua geothermal field, New Zealand. Geothermics 21(1/2):121–140

    Article  Google Scholar 

  4. Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510

    Article  CAS  Google Scholar 

  5. Capasso G, Alessandro WD, Favara R (2001) Interaction between the deep fluids and the shallow groundwaters on volcano island (Italy). J Volcanol Geotherm Res 108:187–198

    Article  CAS  Google Scholar 

  6. Vengosh A, Helvac C, Karamanderesi İH (2002) Geochemical constraints for the origin of thermal waters from western Turkey. Appl Geochem 17:163–183

    Article  CAS  Google Scholar 

  7. Erees FS, Aytas S, Sac MM, Yener G, Salk M (2005) Radon concentrations in thermal waters related to seismic events along faults in the Denizli Basin, Western Turkey. Radiat Meas 42:80–86

    Article  Google Scholar 

  8. Sanada T, Takamatsu N, Yoshiike Y (2006) Geochemical interpretation of long-term variations in rare earth element concentrations in acidic hot spring waters from the Tamagawa geothermal area, Japan. Geothermics 35:141–155

    Article  CAS  Google Scholar 

  9. Shakeri A, Moore F, Kompani-Zare M (2008) Geochemistry of the thermal springs of mount Taftan, southeastern Iran. J Volcanol Geotherm Res 178:829–836

    Article  CAS  Google Scholar 

  10. Guo Q, Wang Y (2012) Geochemistry of hot springs in the Tengchong hydrothermal areas, southwestern China. J Volcanol Geotherm Res 215–216:61–73

    Article  Google Scholar 

  11. Ansari MR (2013) Hydrochemistry of the Damavand thermal springs, north of Iran. Life Sci J 10(7s)

  12. Ghadimi F, Mirzaei M, Ghomi M, Araghi M (2013) Multivariate statistical analyzing of chemical parameters of thermal and non-thermal springs of Mahalat area in Iran. J Geopersia 3(1):57–68

    Google Scholar 

  13. Horvath AD, Bohus LO, Urbani F, Marx G, Piroth A, Greaves ED (2000) Radon concentrations in hot spring waters in northern Venezuela. J Environ Radioact 47:127–133

    Article  CAS  Google Scholar 

  14. Idriss H, Salih I, Sam AK (2001) Study of radon in ground water and physicochemical parameters in Khartoum state. J Radioanal Nucl Chem 290(2):333–338

    Article  Google Scholar 

  15. Saqan SA, Kullab MK, Ismail AM (2001) Radionuclides in hot mineral spring waters in Jordan. J Environ Radioact 52:99–107

    Article  CAS  Google Scholar 

  16. Przylibski TA, Kozłowska B, Dorda J, Kiełczawa B (2002) 222Rn and 226Ra concentrations in mineralized groundwaters of Gorzano´w (Kłodzko Basin, Sudeten Mountains, SW Poland). J Radioanal Nucl Chem 253(1):11–19

    Article  CAS  Google Scholar 

  17. Selvasekarapandian S, Sivakumar R, Manikandan NM, Ragjunath VM, Kannan V, Rajaram S (2002) A study on the radon concentration in water in Coonoor, India. J Radioanal Nucl Chem 252(2):345–347

    Article  CAS  Google Scholar 

  18. Kobayashi Y, Tokonami S, Narazaki Y, Zhuo W, Furukawa M (2005) Enhanced indoor radon concentration by using radon-rich well water in a Japanese wooden house in Fukuoka, Japan. J Radioanal Nucl Chem 266(3):389–396

    Article  CAS  Google Scholar 

  19. Erees FS, Yener G, Salk M, Özbal Ö (2006) Measurements of radon content in soil gas and in the thermal waters in western Turkey. Radiat Meas 41:354–361

    Article  CAS  Google Scholar 

  20. Beitollahi M, Ghiassi-Nejad M, Esmaeli A, Dunker R (2007) Radiological studies in the hot spring region of Mahallat, central Iran. Radiat Prot Dosim 123(4):505–508

    Article  CAS  Google Scholar 

  21. Sakodaa A, Hanamotoa K, Ishimorib Y, Nagamatsua T, Yamaokaa K (2008) Effects of some physical conditions on leaching rate of radon from radioactive minerals originating from some hot springs. Radiat Meas 43:106–110

    Article  Google Scholar 

  22. Darko EO, Adukpo OK, Fletcher JJ, Awudu AR, Otoo F (2009) Preliminary studies on 222Rn concentration in ground water from selected areas of the Accra metropolis in Ghana. J Radioanal Nucl Chem 283(2):505–512

    Google Scholar 

  23. Chaudhuri H, Nisith KD, Bhandari RK, Sen P, Sinh B (2010) Radon activity measurements around Bakreswar thermal springs. Radiat Meas 45:143–146

    Article  CAS  Google Scholar 

  24. Karimdoust SH, Ardebili L (2010) The environmental impact of radon emitted from hot spring of Sarein (a touristic city northwestern Iran. World Appl Sci J 10(8):930–935

    CAS  Google Scholar 

  25. Montazeri H, Abbasnejad A, Negarestani A (2011) Continuous radon monitoring in the Jowshan hot spring as an earthquake precursor, SE Iran. Geochem J 45:463–472

    Article  CAS  Google Scholar 

  26. Namvaran M, Negarestani A (2012) Measuring the radon concentration and investigating the mechanism of decline prior an earthquake (Jooshan, SE of Iran). J Radioanal Nucl Chem 298(1):1–8

    Article  Google Scholar 

  27. Sola P, Srisuksawad K, Loaharojanaphand S, O-Manee A, Permnamtip V, Issarapan P, Thummagarun L (2013) Radon concentration in air, hot spring water, and bottled mineral water in one hot spring area in Thailand. J Radioanal Nucl Chem 297(2):183–187

    Article  CAS  Google Scholar 

  28. Tabar E, Yakut H (2014) Radon measurements in water samples from the thermal springs of Yalova basin, Turkey. J Radioanal Nucl Chem 299(1):311–319

    Article  CAS  Google Scholar 

  29. Negarestani A, Namvaran M, Shahpasandzadeh M, Fatemi SJ, Alavi SA, Hashemi SM, Mokhtari M (2014) Design and investigation of a continuous radon monitoring network for earthquake precursory process in Great Tehran. J Radioanal Nucl Chem 300(2):757–767

    Article  CAS  Google Scholar 

  30. Zhai Y, Wang J, Bo-tao Zhang B, Guo Y, Yanguo Teng Y, Jun Zhou J (2014) Physical, hydrochemical and isotopic characteristics of springs in Beijing, China, compared to historical properties. J Radioanal Nucl Chem 300(1):315–323

    Article  CAS  Google Scholar 

  31. Singh B, Garg VK, Yadav P, Kishore N, Pulhani V (2014) Uranium in groundwater from western Haryana, India. J Radioanal Nucl Chem 301(2):427–433

    Article  CAS  Google Scholar 

  32. Finn LS (1992) Detection, measurement and gravitational radiation. Phys Rev 46(12):5236–5549

    CAS  Google Scholar 

  33. Voronov AN (2004) Radon-rich waters in Russia. Environ Geol 46:630–634

    Article  CAS  Google Scholar 

  34. Przylibski TA (2011) Shallow circulation groundwater—the main type of water containing hazardous radon concentration. Nat Hazards Earth Sys Sci 11:1695–1703

    Article  Google Scholar 

  35. Chau ND, Dulinski M, Jodlowski P, Nowak J, Rozanski K, Sleziak M, Wachniew P (2011) Natural radioactivity in groundwater—a review. Isot Environ Health Stud 47(4):415–437

    Article  Google Scholar 

  36. Roth HB, Bhowmik KR, Parish LC, Witkowski JA (1996) Balneology, mineral water, and spas in historical perspective. Clin Dermatol 6:551–554

    Article  Google Scholar 

  37. Millikan LE (2002) Complementary medicine in dermatology. Clin Dermatol 5:602–605

    Article  Google Scholar 

  38. Mirhosseini SM (2014) Environmental hydrochemistry of hot springs in the west of Hormozgan, emphasizing on seasonal change of radon concentrations. Ph.D. thesis, Graduate School of the Environment and Energy, Science and Research Branch, Islamic Azad University (in Persian), p 245

  39. Iranian Oil Operation Company (IOOC), Geological and Exploration Division (1965) Geological map of S.W. Fars, Drawing No. 25232

  40. Karimi H, Moore F (2008) The source and heating mechanism for the Ahram, Mirahmad and Garu thermal springs, Zagros Mountains, Iran. Geothermics 37:84–100

    Article  Google Scholar 

  41. Manzoor A, Waheed A, Niaz A, Muhammad AT (2002) Assessment of reservoir temperatures of thermal springs of the northern areas of Pakistan by chemical and isotope geothermometry. Geothermics 31:613–631

    Article  Google Scholar 

  42. Karami GH (2002). Assessing the heterogeneity and flow system types in karstic aquifers using pumping test data. Ph.D. thesis, University Of Newcastle, 180 p

  43. Ashari A, Ghasemi M, Zargaran M, Tatar M, Ansari A (2013) Preliminary Earthquake Report (January 2, 2014) Bastak- Hormozgan, Iran. International Institute of Earthquake, p 11

  44. Przylibski TA (2005) Radon specific component of medicinal waters in the Sudety Mountains. Oficyna Wydawnicza Politechniki Wroc1awskiej, Wroc1aw (in Polish)

  45. Przylibski TA, Gorecka J (2014) 222Rn activity concentration differences in groundwaters of three Variscan granitoid massifs in the Sudetes (NE Bohemian Massif, SW Poland). J Environ Radioact 134:43–53

    Article  CAS  Google Scholar 

  46. Ponikowska I, Adamczyk P, Khai Vu (2003) The clinical principles of balneology & physical medicine. Balneology J—winter 2003. Adapted from: ponikowska I. 2002. Polska droga rozwoju lecznictwa uzdrowiskowego. Balneologia Polska 44:105–113

    Google Scholar 

  47. EPA. Office of Water - 4607 M (2012) Report to congress: Radon in drinking water regulations. 815-R-12-002

  48. WHO (2008) Guidelines for drinking-water Quality, second addendum, vol. 1, Recommendations. 3rd edn, ISBN 978 92 4 154760 4. World Health Organization, Geneva

  49. United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Sources and effects of ionizing radiation. UNSCEAR 2000 Report, United Nations Publication

  50. Gurler O, Akar U, Kahraman A (2010) Measurements of radon levels in thermal waters of Bursa, Turkey. Fresenius Environ Bull 19:3013–3017

    CAS  Google Scholar 

  51. Bolca M, Sac MM, Altinbas U, Camgoz B (2007) Chemical and radioactivity effects of geothermal springs on environmental pollution in Seferihisar region in western Turkey. Asian J Chem 19(3):2265–2276

    CAS  Google Scholar 

  52. Oner F, Yigitoglu I, Yalim HA (2013) Measurements of radon concentrations in spa waters in Amasya, Turkey. Radiat Prot Dosim 157(2):221–224

    Article  CAS  Google Scholar 

  53. Song G, Wang X, Chen D, Chen Y (2011) Contribution of 222Rn- bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China. J Environ Radioact 102(4):400–406

    Article  CAS  Google Scholar 

  54. Bertolo A, Bigliotto C (2004) Radon concentration in waters of geothermal Euganean basin-Veneto, Italy. Radiat Prot Dosim 111(4):355–358

    Article  CAS  Google Scholar 

  55. Eross A, Madl-Szonyi J, Surbeck H, Horvath A, Goldscheider N, Csoma AE (2012) Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary. J Hydrol 426–427:124–137

    Article  Google Scholar 

  56. Duenas C, Fernandez MC, Enraquez C, Carretero J, Liger E (1998) Natural radioactivity levels in Andalusian spas. Water Res 32(8):2271–2278

    Article  CAS  Google Scholar 

  57. Roba CA, Nita D, Cosma C, Codrea V, Olah S (2012) Correla-tions between radium and radon occurrence and hydrogeochemical features for various geothermal aquifers in northwestern Romania. Geothermics 42:32–46

    Article  CAS  Google Scholar 

  58. Nikolov J, Todorovic N, Petrovic Pantic T, Forkapic S, Mrdja D, Bikit I, Krmar M, Veskovic M (2012) Exposure to radon in the radon spa Niska Banja, Serbia. Radiat Meas 47:443–450

    Article  CAS  Google Scholar 

  59. Böhm C (2002) Radon inWasser—Uberblick für den Kanton Graubünden. Jahresbericht Naturforschende Gesellschaft Graubünden 111:49

    Google Scholar 

  60. Katz U, Shoenfeld Y, Zakin V, Sherer Y, Sukenik S (2012) Scientific evidence of the therapeutic effects of dead sea treatments: a systematic review. Semin Arthritis Rheu 42:186–200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mirhosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirhosseini, S.M., Negarestani, A., Moattar, F. et al. Water chemistry and radon concentrations of thermal springs in Bastak area, south of Persia. J Radioanal Nucl Chem 304, 1085–1092 (2015). https://doi.org/10.1007/s10967-014-3919-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3919-y

Keywords

Navigation