Skip to main content
Log in

Radon activity concentrations in Jale and Mersaid warm water springs in Koya District, Kurdistan Region-Iraq

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, the activity concentrations of radon gas C(222Rn) in the water of Jale and Mersaid springs were measured by using an HPGe spectrometer. The average C(222Rn) in the main Mersaid spring (T≈ 33 °C) and Jale warm outlet (T≈ 36 °C) was 24.10 ± 0.50 and 30.11 ± 0.67 Bq L−1, respectively. In the left cold outlet (T≈ 25 °C) and right cold outlet (T≈ 24 °C) of Jale spring, the average C(222Rn) was about 21.04 ± 0.52 and 19.04 ± 0.55 Bq L−1, respectively. The C(222Rn)/C(226Ra) ratio was 100. Results showed that a substantial amount of 222Rn might have been lost as water flowed to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UNSCEAR (1988) Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 1988 Report to the General Assembly, with Scientific Annexes. United Nations Scientific Committee on the Effects of Atomic Radiation

  2. UNSCEAR (2000) Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes

  3. Dalrymple GB (2001) The age of the Earth in the twentieth century: a problem (mostly) solved. Geol Soc 190:205–221. https://doi.org/10.1144/GSL.SP.2001.190.01.14

    Article  Google Scholar 

  4. Otton JK (1992) The geology of radon. US Geological Survey special publication

  5. National Research Council and others (2012) Uranium mining in virginia: scientific, technical, environmental, human health and safety, and regulatory aspects of uranium mining and processing in virginia. National Academies Press

  6. Speelman WJ (2004) Modelling and measurement of radon diffusion through soil for application on mine tailings dams diffusion. University of the Western Cape

  7. Arabi AS, Futua II, Dewu BBM et al (2016) NORM, radon emanation kinetics and analysis of rocks-associated radiological hazards. Environ Earth Sci. https://doi.org/10.1007/s12665-016-5488-6

    Article  Google Scholar 

  8. Singh AK, Sengupta D, Prasad R (1999) Radon exhalation rate and uranium estimation in rock samples from Bihar uranium and copper mines using the SSNTD technique. Appl Radiat Isot 51:107–113. https://doi.org/10.1016/S0969-8043(98)00152-3

    Article  CAS  PubMed  Google Scholar 

  9. Wan C, Li K, Shen S et al (2019) Using tritium and 222Rn to estimate groundwater discharge and thawing permafrost contributing to surface water in permafrost regions on Qinghai-Tibet Plateau. J Radioanal Nucl Chem 322:561–578. https://doi.org/10.1007/s10967-019-06720-5

    Article  CAS  Google Scholar 

  10. Zheng MJ, Wan CW, Du MD et al (2016) Application of Rn-222 isotope for the interaction between surface water and groundwater in the Source Area of the Yellow River. Hydrol Res 47:1253–1262. https://doi.org/10.2166/nh.2016.070

    Article  CAS  Google Scholar 

  11. Yi P, Luo H, Chen L et al (2018) Evaluation of groundwater discharge into surface water by using Radon-222 in the Source Area of the Yellow River, Qinghai-Tibet Plateau. J Environ Radioact 192:257–266. https://doi.org/10.1016/j.jenvrad.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  12. USEPA (1992) Technical Support Document for the 1992 Citizen’s Guide to Radon, USEPA Publication 400-R-011. United States Environmental Protection Agency, Washington DC, USA

  13. USEPA (1991) Federal Register 40 Parts 141 and 142 National Primary Drinking Water Regulations; Radionuclides: Proposed Rule. U.S. United States Environmental Protection Agency

  14. European Commission (2014) Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom a. Off J Eur Commun 13:1–73. https://doi.org/10.3000/19770677.L_2013.124.eng

    Article  Google Scholar 

  15. Ezzulddin SK, Mansour HH (2020) Radon and radium activity concentration measurement in drinking water resources in Kurdistan Region-Iraq. J Radioanal Nucl Chem 324:963–976. https://doi.org/10.1007/s10967-020-07177-7

    Article  CAS  Google Scholar 

  16. Qadir RW, Asaad N, Qadir KW et al (2020) Relationship between radon concentration and physicochemical parameters in groundwater of Erbil city. Iraq J Radiat Res Appl Sci. https://doi.org/10.1080/16878507.2020.1856588

    Article  Google Scholar 

  17. Singh B, Kant K, Garg M et al (2019) A comparative study of radon levels in underground and surface water samples of Faridabad district of Southern Haryana, India. J Radioanal Nucl Chem 319:907–916. https://doi.org/10.1007/s10967-018-6384-1

    Article  CAS  Google Scholar 

  18. Singh B, Kant K, Garg M et al (2019) A study of seasonal variations of radon, thoron and their progeny levels in different types of dwellings in Faridabad district, Southern Haryana, India. J Radioanal Nucl Chem 320:841–857. https://doi.org/10.1007/s10967-019-06544-3

    Article  CAS  Google Scholar 

  19. Molina Porras A, Condomines M, Seidel JL (2017) Determination of low-level Radium isotope activities in fresh waters by gamma spectrometry. Appl Radiat Isot 120:119–125. https://doi.org/10.1016/j.apradiso.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  20. Al-Kubuisi QY, Gardi LMM (2012) Dust storm in Erbil City as a result of climatic change in Kurdistan Region Iraq. IraqI J Sci 53:40–44

    Google Scholar 

  21. Jalal SA (1988) Erbil area climate comparative study on local climate. Salahaddin University

  22. Stevanovic Z, Iurkiewicz A (2009) Groundwater management in northern Iraq. Hydrogeol J 17:367–378

    Article  Google Scholar 

  23. UNESCO/WMO (1985) Hydrological aspects of drought, prospects for the limitation of the consquences of hydrological drought. UNESCO

  24. Rasoul ZR (2001) Weather and local climate of Erbil city in 1999, Report for Agricultural Meteorology Department of FAO-Iraq. Erbil

  25. Al-Ansari N, Ali AA, Knutsson S (2014) Present conditions and future challenges of water resources problems in Iraq. J Water Resour Prot 06:1066–1098. https://doi.org/10.4236/jwarp.2014.612102

    Article  Google Scholar 

  26. Guest E (1966) Flora of Iraq, vol 1. Ministry of Agriculture, Baghdad

    Google Scholar 

  27. Round FE (1975) The Biology of the Algae, 2nd edn. Edward Arnold, London

    Google Scholar 

  28. Othman BA (2008) Limnology and hygienic status of some water resources within Koya district. Koya University

  29. Al-Barzingy Y, Goran S, Toma J (2009) An ecological study on water to some thermal springs in Koya-Erbil Province Iraq. J Educ Sci 22:36–48

    Article  Google Scholar 

  30. Ibrahim AMK (1981) A study on algal ecology of springs in Sulaimaniyah province. University of Sulaymaniyah

  31. Bilbas AHA (2004) Phycolimnological study on some springs with in Arbil province. University of Sulaymaniyah

  32. Ahmad ST (2016) High purity Germanium Koya4039 Gamma detection system. ICEEAS-2016-Proceedings-Book, pp. 268–276

  33. Azeez HH, Ahmad ST, Mansour HH (2018) Assessment of radioactivity levels and radiological-hazard indices in plant fertilizers used in Iraqi Kurdistan Region. J Radioanal Nucl Chem 317:1273–1283. https://doi.org/10.1007/s10967-018-6001-3

    Article  CAS  Google Scholar 

  34. PGT Company (2001) Quantum Family Software User Manual, Version 4.04.00 02/00, Copyright 1993–2001 Princeton Gamma-Tech Instruments, Inc. Nuclear Products group. Printed in U.S.A

  35. L’Annunziata MF (2012) Handbook of radioactivity analysis, 3rd edn. Elsevier, USA

    Google Scholar 

  36. Currie LA (1968) Limits for qualitative detection and quantitative determination: application to radiochemistry. Anal Chem 40:586–593. https://doi.org/10.1021/ac60259a007

    Article  CAS  Google Scholar 

  37. UNSCEAR (2008) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, New York

    Google Scholar 

  38. Chau ND, Dulinski M, Jodlowski P et al (2011) Natural radioactivity in groundwater—a review. Isotopes Environ Health Stud 47:415–437. https://doi.org/10.1080/10256016.2011.628123

    Article  CAS  Google Scholar 

  39. Khattak NU, Khan MA, Shah MT, Javed MW (2011) Radon concentration in drinking water sources of the Main Campus of the University of Peshawar and surrounding areas, Khyber Pakhtunkhwa, Pakistan. J Radioanal Nucl Chem 290:493–505. https://doi.org/10.1007/s10967-011-1297-2

    Article  CAS  Google Scholar 

  40. Tabar E, Kumru MN, Ichedef M, Sac MM (2013) Radioactivity level and the measurement of soil gas radon concentration in Dikili geothermal area, Turkey. Int J Radiat Res 11:253–261

    Google Scholar 

  41. WHO (2007) International Radon Project (Survey on Radon Guidlines, Programmes and Activities). World Health Organization, Geneva

    Google Scholar 

  42. Wanabongse P, Tokonami S, Bovornkitti S (2005) Current studies on radon gas in Thailand. Int Congr Ser 1276:208–209. https://doi.org/10.1016/j.ics.2004.11.009

    Article  CAS  Google Scholar 

  43. Bertolo A, Bigliotto C (2004) Radon concentration in waters of geothermal Euganean Basin—Veneto, Italy. Radiat Prot Dosimetry 111:355–358. https://doi.org/10.1093/rpd/nch053

    Article  CAS  PubMed  Google Scholar 

  44. Chaudhuri H, Das NK, Bhandari RK et al (2010) Radon activity measurements around Bakreswar thermal springs. Radiat Meas 45:143–146. https://doi.org/10.1016/j.radmeas.2009.11.039

    Article  CAS  Google Scholar 

  45. Dueñas C, Fernández MC, Enríquez C et al (1998) Natural radioactivity levels in Andalusian spas. Water Res 32:2271–2278. https://doi.org/10.1016/S0043-1354(97)00472-7

    Article  Google Scholar 

  46. Eross A, Mádl-Szonyi J, Surbeck H et al (2012) Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary. J Hydrol 426–427:124–137. https://doi.org/10.1016/j.jhydrol.2012.01.031

    Article  CAS  Google Scholar 

  47. Roba CA, Niţǎ D, Cosma C et al (2012) Correlations between radium and radon occurrence and hydrogeochemical features for various geothermal aquifers in Northwestern Romania. Geothermics 42:32–46. https://doi.org/10.1016/j.geothermics.2011.12.001

    Article  CAS  Google Scholar 

  48. Al-Bataina BA, Ismail AM, Kullab MK et al (1997) Radon measurements in different types of natural waters in Jordan. J Radiat Meas 28:591–594. https://doi.org/10.1016/S1350-4487(97)00146-7

    Article  CAS  Google Scholar 

  49. Al-Kazwini AT, Hasan MA (2003) Radon concentration in Jordanian drinking water and hot springs. J Radiol Prot 23:439–448. https://doi.org/10.1088/0952-4746/23/4/007

    Article  CAS  PubMed  Google Scholar 

  50. Jalili-Majareshin A, Behtash A, Rezaei-Ochbelagh D (2012) Radon concentration in hot springs of the touristic city of Sarein and methods to reduce radon in water. Radiat Phys Chem 81:749–757. https://doi.org/10.1016/j.radphyschem.2012.03.015

    Article  CAS  Google Scholar 

  51. Tabar E, Yakut H (2014) Radon measurements in water samples from the thermal springs of Yalova basin, Turkey. J Radioanal Nucl Chem 299:311–319. https://doi.org/10.1007/s10967-013-2845-8

    Article  CAS  Google Scholar 

  52. Girault F, Perrier F, Przylibski TA (2018) Radon-222 and radium-226 occurrence in water: a review. Geol Soc Spec Publ 451:131–154. https://doi.org/10.1144/SP451.3

    Article  Google Scholar 

  53. Azeez HH, Mansour HH, Ahmad ST (2019) Transfer of natural radioactive nuclides from soil to plant crops. Appl Radiat Isot 147:152–158. https://doi.org/10.1016/j.apradiso.2019.03.010

    Article  CAS  PubMed  Google Scholar 

  54. Kozlowska B, Hetman A, Dorda J, Zipper W (2001) Radon-enriched spring waters in the South of Poland. Radiat Phys Chem 61:677–678. https://doi.org/10.1016/S0969-806X(01)00369-3

    Article  CAS  Google Scholar 

  55. Dowdall A, Currivan L, Hanley O et al (2013) Radioactivity levels in groundwater sources in Ireland. Radiological Protection Institute of Ireland, Dublin

    Google Scholar 

  56. Amrani D, Cherouati DE, Cherchali MEH (2000) Groundwater radon measurements in Algeria. J Environ Radioact 51:173–180. https://doi.org/10.1016/S0265-931X(99)00121-6

    Article  CAS  Google Scholar 

  57. Faanu A, Adukpo OK, Okoto RJS et al (2011) Determination of radionuclides in underground water sources within the environments of University of Cape Coast. Res J Environ Earth Sci 3:269–274

    CAS  Google Scholar 

  58. Muhammad BG, Jaafar MS, Azhar AR, Akpa TC (2012) Measurements of 222Rn activity concentration in domestic water sources in Penang, Northern Peninsular Malaysia. Radiat Prot Dosimetry 149:340–346. https://doi.org/10.1093/rpd/ncr230

    Article  CAS  PubMed  Google Scholar 

  59. Choubey VM, Bartarya SK, Negi MS, Ramola RC (2003) Measurement of radon and thoron concentrations in the indoor atmosphere and drinking water of Eastern Doon Valley, India. Indoor Built Environ 12:191–196. https://doi.org/10.1177/1420326X03012003007

    Article  CAS  Google Scholar 

  60. Moldovan M, Benea V, Niţă DC et al (2014) Radon and radium concentration in water from north-west of Romania and the estimated doses. Radiat Prot Dosim 162:96–100. https://doi.org/10.1093/rpd/ncu230

    Article  CAS  Google Scholar 

  61. Nguelem EJM, Darko EO, Ndontchueng MM et al (2013) Assessment of natural radioactivity level in groundwater from selected areas in Accra metropolis. Res J Environ Earth Sci 5:85–93

    CAS  Google Scholar 

  62. Forozani G, Soori G (2011) Study on radon and radium concentrations in drinking water in west region of Iran. Agric J 6:310–312

    Article  CAS  Google Scholar 

  63. Sarrou I, Pashalidis I (2003) Radon levels in Cyprus. J Environ Radioact 68:269–277. https://doi.org/10.1016/S0265-931X(03)00066-3

    Article  CAS  PubMed  Google Scholar 

  64. Najam LA, Younis SA, Kithah FH (2015) Natural radioactivity in soil samples in Nineveh Province and the associated radiation hazards. Int J Phys 3:126–132. https://doi.org/10.12691/ijp-3-3-6

    Article  CAS  Google Scholar 

  65. Azeez HH, Mansour HH, Ahmad ST (2020) Effect of using chemical fertilizers on natural radioactivity levels in agricultural soil in the Iraqi Kurdistan Region. Polish J Environ Studies 29:1059–1068

    Article  CAS  Google Scholar 

  66. Hussein ZA (2019) Assessment of natural radioactivity levels and radiation hazards for soil samples used in erbil governorate, Iraqi Kurdistan. Sci J Koya Univ 7:34. https://doi.org/10.14500/aro.10471

    Article  Google Scholar 

  67. Abdallah SM, Habib RR, Nuwayhid RY et al (2007) Radon measurements in well and spring water in Lebanon. Radiat Meas 42:298–303. https://doi.org/10.1016/j.radmeas.2006.11.004

    Article  CAS  Google Scholar 

  68. Horváth Á, Bohus LO, Urbani F et al (2000) Radon concentrations in hot spring waters in northern Venezuela. J Environ Radioact 47:127–133. https://doi.org/10.1016/S0265-931X(99)00032-6

    Article  Google Scholar 

  69. Cho JS, Ahn JK, Kim HC, Lee DW (2004) Radon concentrations in groundwater in Busan measured with a liquid scintillation counter method. J Environ Radioact 75:105–112. https://doi.org/10.1016/j.jenvrad.2003.06.002

    Article  CAS  PubMed  Google Scholar 

  70. Zouridakis N, Ochsenkühn KM, Savidou A (2002) Determination of uranium and radon in potable water samples. J Environ Radioact 61:225–232. https://doi.org/10.1016/S0265-931X(01)00125-4

    Article  CAS  PubMed  Google Scholar 

  71. Clark ML, Eddy-Miller CA (1998) Radon in Ground Water in Seven Counties of Wyoming

  72. Salih N, Hussein Z, Sedeeq S (2019) Environmental radioactivity levels in agricultural soil and wheat grains collected from wheat-farming lands of Koya district. Kurdistan Region-Iraq Radiat Prot Environ 42:128. https://doi.org/10.4103/rpe.RPE_37_19

    Article  Google Scholar 

  73. USEPA (2011) Current drinking water standards. US Environmental Protection Agency Office of Water United States Environmental Protection Agency, Washington DC, USA

Download references

Acknowledgements

The authors express their appreciation to the Department of Physics Faculty of Science and Health, Koya University and the Nuclear Physics Laboratory for their cooperation and for providing and implementing the HPGe gamma spectrometer. Without their help, this work would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saddon. T. Ahmad.

Ethics declarations

Conflict of interest

The authors, Saddon T. Ahmad, Iyad A. Almuhsin and Wali M. Hamad, declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S.T., Almuhsin, I.A. & Hamad, W.M. Radon activity concentrations in Jale and Mersaid warm water springs in Koya District, Kurdistan Region-Iraq. J Radioanal Nucl Chem 328, 753–768 (2021). https://doi.org/10.1007/s10967-021-07725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07725-9

Keywords

Navigation