Journal of Radioanalytical and Nuclear Chemistry

, Volume 301, Issue 2, pp 483–491 | Cite as

The effect of temperature on the sorption of U(VI) onto ZrP2O7 in the presence of oxalic acid

  • N. García González
  • E. Ordóñez Regil
  • D. A. Solís Casados
  • M. G. Almazán-Torres
  • E. Simoni
  • R. Drot
  • A. Jeanson
Article

Abstract

The sorption of uranium onto ZrP2O7 in the presence of oxalic acid has been investigated as a function of temperature (20, 40 and 60 °C). Using several complementary analytical methods to characterize the solid surface, it has been shown that the oxalic acid interact with the zirconium diphosphate affecting its surface reactivity. A significant influence of temperature on the sorption reaction has been revealed in the batch experiments. Temperature dependence sorption data and microcalorimetric measurements have been used to determine enthalpy change associated to the sorption reaction. The results have shown that oxalic acid has an important effect on uranium sorption, which is more evident at 60 °C.

Keywords

Oxalic acid Uranium Temperature effect Sorption Enthalpy change 

References

  1. 1.
    IAEA (2006) Geological Disposal of Radioactive Waste, Safety Requeriments No. WS-R-4, Vienna, pp 49Google Scholar
  2. 2.
    Reiller P, Moulin V, Casanova F, Dautel C (2003) On the study of Th(IV)-humic acid interactions by competition sorption studies with silica and determination of global interaction constants. Radiochim Acta 91:513–524CrossRefGoogle Scholar
  3. 3.
    Kumar S, Tomar BS, Ramanathan S, Manchanda VK (2006) Effect of humic acid on cesium sorption on silica colloids. Radiochim Acta 94:369–373Google Scholar
  4. 4.
    Schott J, Acker M, Barkleit A, Brendler V, Taut S, Bernhard G (2012) The influence of temperature and small organic ligands on the sorption of Eu(III) on Opalinus Clay. Radioch. Acta 100:315–324CrossRefGoogle Scholar
  5. 5.
    Murphy RJ, Lenthart JJ, Honeyman BD (1999) The sorption of thorium (IV) and uranium (VI) to hematite in the presence of natural organic matter. Colloid and Surfaces A:Physicochemical and Engineering Aspects 157:47–62CrossRefGoogle Scholar
  6. 6.
    Hanks TC, Winograd IJ, Anderson RE, Reilly TE, Weeks EP (1999) Yucca Mountain as a Radioactive-Waste Repository. USGS Circular 1184:19Google Scholar
  7. 7.
    Verstricht J, Blumling P, Merceron T (2003) Repository concepts for nuclear waste disposal in clay formations. In: Myrvoll F (ed) Proceedings of the 6th International Symposium on Field measurements in geomechanic, Oslo, pp 826Google Scholar
  8. 8.
    Angove MJ, Johnson BB, Wells JD (1998) The influence of temperature on the adsorption of cadmium (II) and cobalt (II) on kaolinite. J. Coll. Interf. Sc. 204:93–103CrossRefGoogle Scholar
  9. 9.
    Echeverria J, Indurain J, Churio E, Garrido J (2003) Simultaneous effect of pH, temperature, ionic strength and initial concentration on the retention of Ni on illite. Coll. Surf. A: Physicochem. Eng. Asp. 218:1–13CrossRefGoogle Scholar
  10. 10.
    Tertre E, Berger G, Castet S, Loubet M, Simoni E (2005) Experimental sorption of Ni2+, Cs+ and Ln3+ onto a montmorillonite up to 150°C. Geochim Cosmochim Acta 69:4937–4948CrossRefGoogle Scholar
  11. 11.
    Finck N, Drot R, Mercier-Bion F, Simoni E, Catalette H (2007) Temperature effects on the acidity properties of zirconium diphosphate. J Colloid Interface Sci 321:230–236CrossRefGoogle Scholar
  12. 12.
    Almazan-Torres MG, Drot R, Mercier-Bion F, Catalette H, Auwer CD, Simoni E (2008) Surface complexation modeling of uranium (VI) sorbed onto zirconium oxophosphate versus temperature: thermodynamic and structural approaches. J Colloid Interface Sci 323:42–51CrossRefGoogle Scholar
  13. 13.
    Qian LJ, Hu PZ, Jiang ZJ, Geng YX, Wu WS (2010) Effect of pH, fulvic acid and temperature on the sorption of uranyl on ZrP2O7. Science Chine: Chemistry 53(6):1429–1437CrossRefGoogle Scholar
  14. 14.
    García-González N, Ordoñez-Regil E, Simoni E, Barrera-Díaz CE (2009) Effect of organic acids on sorption of uranyl ions in solution by ZrP2O7. J. Radionalytical and Nuclear Chemistry 283:409–415CrossRefGoogle Scholar
  15. 15.
    García-González N, Ordoñez-Regil E, Almazán-Torres MG, Solis D, Simoni E (2012) Speciation of U(VI) sorbed onto ZrP2O7 in the presence of citric and oxalic acid. Radiochim Acta 100:305–309CrossRefGoogle Scholar
  16. 16.
    Noh JS, Schwarz JA (1989) Estimation of the Point of Zero Charge of Simple Oxides by Mass Titration. J Colloid Interface Sci 130:157–164CrossRefGoogle Scholar
  17. 17.
    Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11:102–113CrossRefGoogle Scholar
  18. 18.
    Martin J.D. (2008) Xpowder12: A software package for powder X-ray Diffraction Analysis, www.xpowder.com, pp 153
  19. 19.
    Karasyova ON, Ivanova LI, Lakshtanov LZ, Lovgren L (1999) Strontium sorption on hematite at elevated temperatures. J. Coll. Interf. Sci. 220:419–728CrossRefGoogle Scholar
  20. 20.
    Morel JP, Marmier N, Hurel Ch, Morel-Desrosiers N (2012) Effect of temperature on the sorption of europium on alumina: microcalorimetry and batch experiments. J Colloid Interface Sci 376:196–201CrossRefGoogle Scholar
  21. 21.
    Ho YS, McKay G (1999) Pseudo-second order model for soprtion process. Process Biochem 34:451–465CrossRefGoogle Scholar
  22. 22.
    Ho YS, McKay G (2000) The kinetics of Sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742CrossRefGoogle Scholar
  23. 23.
    Ho YS, Ofomaja AE (2006) Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. Journal of Hazardous Materials B 129:137–142CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • N. García González
    • 1
    • 2
    • 3
  • E. Ordóñez Regil
    • 1
  • D. A. Solís Casados
    • 2
  • M. G. Almazán-Torres
    • 1
  • E. Simoni
    • 3
  • R. Drot
    • 3
  • A. Jeanson
    • 3
  1. 1.Instituto Nacional de Investigaciones NuclearesOcoyoacacMexico
  2. 2.Programa de Doctorado de Ciencia de Materiales de la Facultad de QuímicaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  3. 3.Groupe de Radiochimie, Institut de Physique NucléaireUniversité Paris Sud 11OrsayFrance

Personalised recommendations