Skip to main content
Log in

Dissolved air flotation for treating wastewater of the nuclear industry: preliminary results

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Preliminary testing of dissolved air flotation (DAF) for wastewater treatment is presented. A combined coagulation-flocculation/DAF column system is used to remove oil and 60Co from nuclear industry wastewater. In this work, operational conditions and coagulant/flocculant concentrations are optimized by varying pH. Determinations of air-solids ratio (G/S), retention time (θ), pressure (P), volume of depressurized air–water mixture (V), turbidity and 60Co concentrations are reported. The effect of the treatment on the efficiency of separation of oily residues is also discussed. The results establish that the coagulant/flocculant system, formed by a modified polyamine (25 mgL−1) and a slightly cationic polyacrylamide (1.5 mgL−1), under specific operational conditions (pH = 7, mixing intensity Im1 = 300 s−1 and Im2 = 30 s−1), allowed the destabilization of colloidal matter, resulting in resistant flocs. It was concluded that by using G/S = 0.3, θ = 15 min, P = 620 kPa and V = 0.0012 m3, the greatest percentage removals of oil, turbidity, total cobalt and 60Co were obtained. These preliminary results then show that dissolved air flotation represents a good alternative for treatment of nuclear industry wastewater contaminated with radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ling K (2010) Can fresh founds jump-stars a U.S. nuclear renaissance? Two new reactor in Georgia will benefit from $ 8 billion in U.S. government backing. Scientific American online. Reprinted from Greenwire with permission from Environment & Energy Publishing, LLC

  2. Flores-Espinosa RM, Ortiz-Oliveros HB, López R, Cisneros L, Balcázar M, Perusquía R (1999) Estudios cinéticos para optimizar los parámetros de operación de la descontaminación radiactiva de aceites gastados. International joint meeting. The role of nuclear power to mitigate climate change. Acapulco, Sociedad Nuclear Mexicana. Julio 18–21:97–112

    Google Scholar 

  3. International Atomic Energy Agency (2003) Combined methods for liquid radioactive waste treatment. International Atomic Energy Agency-Technical Document (IAEA-TECDOC-1336), Vienna

    Google Scholar 

  4. International Atomic Energy Agency (2002) Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers. Technical Reports Series No. 408. IAEA, Vienna

    Google Scholar 

  5. Mezhov EHA, Samatov AV, Troyanovsky LV (1990) Actinide and lanthanide extraction from nitric acid solutions by flotation. J Radioanal Nucl Chem 143:323–328

    Article  CAS  Google Scholar 

  6. Beheir SHG, Aziz M, Shakir K (1993) Studies on the liquid–liquid extraction and ion and precipitate flotation of Co(II) with decanoic acid. J Radioanal Nucl Chem 174:13–22

    Article  CAS  Google Scholar 

  7. Aziz M, Beheir SHG (1995) Studies on the liquid–liquid extraction and precipitate flotation of the second kind of Co(II) using 8-hydroxy quinoline. J Radioanal Nucl Chem 196:35–449

    Article  CAS  Google Scholar 

  8. Downey DM, Narick CN, Cohen TA (1985) Flotation separation of hafnium(IV) from aqueous solutions. J Radioanal Nucl Chem 91(2):259–268

    Article  CAS  Google Scholar 

  9. Aziz M, Beheir SHG (1995) Removal of 60Co and 134Cs from radioactive process waste water by flotation. J Radioanal Nucl Chem 191:53–66

    Article  CAS  Google Scholar 

  10. NORMA Oficial Méxicana NOM-28-NUCL-2009 (2009) Manejo de desechos radiactivos en instalaciones radiactivas que utilizan fuentes abiertas, Diario Oficial Martes 4 de agosto de 2009

  11. Bratby J, Morais G (1975) Saturators performance in dissolved air (pressure) flotation. Water Res 9:929–936

    Article  Google Scholar 

  12. Edzwald J (1995) Principles and applications of dissolved air flotation. Water Sci Technol 31:1–23

    CAS  Google Scholar 

  13. Capps R, Matelli G, Bradford M (1993) Reduce oil and grease content in wastewater. Hydrocarbons Process 6:102–110

    Google Scholar 

  14. Bensadok K, Belkacem M, Nezzal G (2007) Treatment of cutting oil/water emulsion by coupling coagulation and dissolved air flotation. Desalination 206:440–448

    Article  CAS  Google Scholar 

  15. Arora H, DeWolfe JR, Lee RG, Grubb TP (1995) Evaluation of dissolved air flotation process for water clarification and sludge thickening. Water Sci Technol 31:137–147

    CAS  Google Scholar 

  16. Al-Mutairi NZ, Al-Sharifi FA, Al-Shammari SB (2008) Evaluation study of slaughterhouse wastewater treatment plant including contact-assisted activated sludge and DAF. Desalination 225:167–175

    Article  CAS  Google Scholar 

  17. Hall T, Pressdee J, Gregory R, Murray K (1995) Cryptosporidium removal during water treatment using dissolved air flotation. Water Sci Technol 31:125–135

    Google Scholar 

  18. Teixeira MR, Rosa MJ (2006) Comparing dissolved air flotation and conventional sedimentation to remove cynobacterial cells of Microcystis aeruginosa: Part 1: the key operating conditions. Sep Purif Technol 52:84–90

    Article  CAS  Google Scholar 

  19. Rulyov NN (2008) New areas in the development of technology of purifying natural water of finely-dispersed lyophilic impurities by flocculation and flotation. J Water Chem Technol 30:224–240

    Article  Google Scholar 

  20. Rodrigues RT, Rubio J (2007) DAF-dissolved air flotation: potential applications in the mining and mineral processing industry. Int J Miner Process 82:1–13

    Article  CAS  Google Scholar 

  21. Stoica L, Filip D, Filip GH, Razvan A, Radulescu R (1998) Removal of 226Ra(II) from uranium mining and processing effluents. J Radioanal Nucl Chem 229:139–142

    Article  CAS  Google Scholar 

  22. Macfarlane AL, Prestidge R, Farid MM, Chen JJ (2009) Dissolved air flotation: a novel approach to recovery of organosolv lignin. Chem Eng J 148:15–19

    Article  CAS  Google Scholar 

  23. Sena RF, Tambosi JL, Genena AK, Moreira RFPM, Schoder HF, Jose HJ (2009) Treatment of meat industry wastewater using dissolved air flotation and advanced oxidation processes monitored by GC-MS and LC-MS. Chem Eng J 152:151–157

    Article  Google Scholar 

  24. El-Diwani G, El-Ibiari NN, Hawash SI (2009) Treatment of hazardous wastewater contaminated by nitrocellulose. J Hazard Mater 167:830–834

    Article  CAS  Google Scholar 

  25. Sudilovskiy PS, Kagramanov GG, Trushin AM, Kolesnikov VA (2007) Use of membranes for heavy metal cationic wastewater treatment: flotation and membrane filtration. Clean Technol Environ Policy 9:189–198

    Article  CAS  Google Scholar 

  26. Geraldes V, Anil A, Pinho MN, Duarte E (2007) Dissolved air flotation of surface water for spiral-wound module nanofiltration pre-treatment. Resour Conserv Recycl 50:202–210

    Article  Google Scholar 

  27. Ferguson C, Logsdon GS, Curley D (1995) Comparison of dissolved air flotation and direct filtration. Water Sci Technol 31:113–124

    CAS  Google Scholar 

  28. Ortiz-Oliveros HB (2002) Tratamiento de aguas Oleosas por Flotación. Tesis de Maestría, Universidad Autónoma del Estado de México. Facultad de Ingeniería, México

  29. Peters R, Bennet G (1989) The simultaneous removal of oil and heavy metals from industrial wastewater using hydroxide and sulfide precipitation coupled with air flotation. Hazard Waste Hazard Mater 6:327–345

    Article  CAS  Google Scholar 

  30. Ødegaard H (1995) Optimization of flocculation/flotation in chemical wastewater treatment. Water Sci Technol 31:73–82

    Google Scholar 

  31. Xiao-bing Li, Jion-tian Liu, Yong-tian Wang, Cun-ying Wang, Xiao-hua Zhou (2007) Separation of oil from wastewater by column flotation. J China Univ Min Technol 17:546–551

    Article  Google Scholar 

  32. American Public Health Association (APHA) (1995) Método 5520 E Soxhlet extraction method. Standard methods for the examination of water and wastewater, USA, 19th edn. APHA, Washington DC, pp 5–34

    Google Scholar 

  33. Cocher DC (1981) Radiactive decay data tables. In: Smith JS (ed). Technical Information Center, U.S. DOE, Springfield

  34. Baes C, Mesmer J (1976) Hydrolysis of cations, 1st edn. Wiley, New York

    Google Scholar 

  35. Reay D, Ratcliff G (1973) Removal of fine particles from water by dispersed air flotation: effects of bubble size and particle size on collection efficiency. Can J Chem Eng 51:178–185

    Article  CAS  Google Scholar 

  36. Edzwald J, Malley J, Yu C (1990) A conceptual model for dissolved air flotation in water treatment. Water Supply 8:14–150

    Google Scholar 

  37. Rijk S, Van Der Graff J, Den Blanken J (1994) Bubble size in flotation thickening. Water Res 28:465–473

    Article  Google Scholar 

  38. Pinto Filho ACT, Brandão CS (2001) Evaluation of flocculation and dissolved air flotation as an advanced wastewater treatment. Water Sci Technol 43:83–90

    CAS  Google Scholar 

  39. Zoubolis AI, Matis KA (1995) Removal of cadmium from dilute solutions by flotation. Water Sci Technol 31:315–326

    Article  Google Scholar 

  40. Edzwald JK (2010) Dissolved air flotation and me. Water Res 44:2077–2106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the departmental activity of the Instituto Nacional de Investigaciones Nucleares (ININ). H. B. Ortiz-Oliveros is grateful to ININ, Consejo Nacional de Ciencia y Tecnología (CONACyT) and Universidad Autónoma del Estado de México (UAEM). The technicians of ININ are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Ortiz-Oliveros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz-Oliveros, H.B., Flores-Espinosa, R.M., Jiménez-Domínguez, H. et al. Dissolved air flotation for treating wastewater of the nuclear industry: preliminary results. J Radioanal Nucl Chem 292, 957–965 (2012). https://doi.org/10.1007/s10967-012-1682-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1682-5

Keywords

Navigation