Skip to main content
Log in

A new approach to single-comparator instrumental neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new parametric approach to single-comparator instrumental neutron activation analysis (INAA) at the University of Missouri Research Reactor (MURR) was investigated. A detailed MCNP steady-state model of the MURR core was developed using the latest neutron data libraries to compute the continuous-energy neutron flux distribution. Intrinsic reaction rates were predicted by coupling the computed local flux distribution to the isotopic (n, γ) excitation functions for a range of elements present in standard reference materials (SRM). Using the predicted (n, γ) reaction-rates, the concentrations for the various elements were determined. The method worked well for all nuclides tested, including those with cross sections that are not proportional to 1/v such as Lu and Eu with agreements for most elements within 5% of the reference value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The u-score values are given as \( \,u = \;\frac{{|c_{e} - c_{c} |}}{{\sqrt {\sigma_{e}^{2} + \sigma_{c}^{2} } }} \) where c and σ are the mean and standard deviation, and subscripts c and e are for the certified and experimental values, respectively [16].

References

  1. Greenberg RR (2008) J Radioanal Nucl Chem 278:231–240

    Article  CAS  Google Scholar 

  2. Adams F (1998) Accred Qual Assur 3:308–316

    Article  CAS  Google Scholar 

  3. De Corte F (2000) J Radioanal Nucl Chem 245:157–161

    Article  Google Scholar 

  4. Weizhi T, Bangfa N, Pingheng W, Lei C, Yangmei Z (2001) J Accred Qual Assur 6:488–492

    Article  Google Scholar 

  5. Weizhi T, Bangfa N, Pingheng W, Lei C, Yangmei Z (2001) J Accred Qual Assur 7:7–12

    Google Scholar 

  6. Weizhi T, Bangfa N, Pingheng W, Lei C, Yangmei Z (2002) J Accred Qual Assur 7:50–54

    Google Scholar 

  7. De Corte F, Moens L, Sordo-El Hammami K, Simonits A et al (1979) J Radioanal Nucl Chem 52:305–316

    Article  Google Scholar 

  8. De Corte F, Simonits A, De Wispelaere A et al (1989) J Radioanal Nucl Chem 133:3–41

    Article  Google Scholar 

  9. Girardi F et al (1965) Anal Chem 37:1085–1092

    Article  CAS  Google Scholar 

  10. De Corte F, Simonits A (2003) At Data Nucl Data Table 85:47–67

    Article  Google Scholar 

  11. Diaz Rizo O, Herrera Peraza EF, Manso Guevara MV et al (1999) J Radioanal Nucl Chem 240:445–450

    Article  CAS  Google Scholar 

  12. Acharya RN, Nair AG, Manohar SB (2002) Appl Radiat Isot 57:391–398

    Article  CAS  Google Scholar 

  13. Acharya RN, Chatt A (2003) J Radioanal Nucl Chem 257:525–529

    Article  CAS  Google Scholar 

  14. Dung HM, Hien PD (2003) J Radioanal Nucl Chem 257:643–647

    Article  CAS  Google Scholar 

  15. Lin X, Alber D, Henkelmann R (2003) J Radioanal Nucl Chem 257:531–538

    Article  CAS  Google Scholar 

  16. Chung YS, Dung HM, Moon JH et al (2006) Nucl Instr Meth 564:702–706

    Article  CAS  Google Scholar 

  17. Siong WB, Dong HM, Wood AK et al (2006) Nucl Instr Meth 564:716–720

    Article  CAS  Google Scholar 

  18. Abugassa IO, Khrbish YS, Abugassa SO et al (2007) J Radioanal Nucl Chem 271:27–30

    Article  CAS  Google Scholar 

  19. Bucar T, Smodis B, Jacimovic R, Jeran Z (2008) Acta Chim Slov 55:166–171

    CAS  Google Scholar 

  20. Brockman JD, Robertson JD (2009) Appl Radiat Isot 67:1084–1088

    Article  CAS  Google Scholar 

  21. X-5 Monte Carlo Team (2005) MCNP5, LA-UR-03-1987, LANL

  22. X-5 Monte Carlo Team (2005) MCNP5, LA-CP-03-0245, LANL

  23. Chadwick MB, Obložinský P, Herman M et al (2006) Nucl Data Sheet 107:2931–3060

    Article  CAS  Google Scholar 

  24. MacFarlane RE, Muir DW, George DC (2000) NJOY 99.0 PSR-480, ORNL

  25. Kelly BT (1989) Modelling of the kinetics of release of Wigner energy in graphite. UKAEA Report. NRL-R-2028(S)

  26. Matos JE, Snelgrove JL (1992) IAEA-TECDOC-643. IAEA, Vienna

  27. Marsden BJ (2000) Nuclear graphite for high temperature reactors. IAEA-TECDOC-1238

  28. Tomberlin TA (2004) 36th International SAMPE Technical Conference. INEEL, Idaho Falls

  29. Zhou T (2006) Benchmarking thermal neutron scattering in graphite in nuclear engineering. Thesis, North Carolina State University, Raleigh

  30. Glasstone S (1957) Principles of nuclear reactor engineering. D.Van Nostrand, New York

    Google Scholar 

  31. MacFarlane RE (1996) LA-UR-98-655, LANL

  32. Fultz B, Kelley T, McKerns M, et al. (2007) Experimental inelastic neutron scattering. California Institute of Technology, Pasadena

  33. Mattes M, Keinert J (2005) IAEA––INDC(NDS)-0475

  34. Mattes M, Keinert J (2005) IAEA––INDC(NDS)-0470

  35. De Soete D, Gijbels R, Hoste J (1972) Neutron actiavtion analysis. Wiley, New York

    Google Scholar 

  36. Kelley K, Hoffman RD, Dietrich FS (2005) UCRL-TR-211668, LLNL

  37. Athari Allafa M, Shahriarib M, Sohrabpour M (2004) Radiat Phys chem 69:461–465

    Article  Google Scholar 

  38. De Wispelaere A, De Corte F, Bossus D et al (2006) Nucl Instr Meth 564:636–640

    Article  Google Scholar 

  39. Hamidatou LA, Ramdhane M (2008) J Radioanal Nucl Chem 278:627–630

    Article  Google Scholar 

  40. Holden NE (1999) IUPAC pure applied chemistry 71:2309–2315

    Article  CAS  Google Scholar 

  41. Cali JP (1977) Certificate of analysis, standard reference material SRM 1577 bovine liver. Office of Standard Reference Materials, National Bureau of Standards, US Department of Commerce, Washington, DC

  42. Certificate of Analysis, Standard Reference Material SRM 1633a Coal Fly Ash, Office of Standard Reference Materials, National Bureau of Standards, US Department of Commerce Washington D.C

  43. Uriano G.A (1981) Certificate of Analysis, Standard Reference Material SRM 278 Obsidian Rock. Office of Standard Reference Materials, National Bureau of Standards, US Department of Commerce, Washington D.C

  44. St-Pierre J, Kennedy G (2007) J Radioanal Nucl Chem 271:283–287

    Article  CAS  Google Scholar 

  45. Ahmed YA, Ewa IOB, Umar IM (2006) J Appl Sci 6:1692–1697

    Article  CAS  Google Scholar 

  46. Natto SA, Lewis DG, Ryde SJS (1998) Appl Radiat Isot 49:545–547

    Article  CAS  Google Scholar 

  47. Frankle SC, Briesmeister JF (1999) LA-13675, LANL

  48. Shahriarib M, Sohrabpour M (2000) Nucl Instr Meth 52:127–135

    Google Scholar 

  49. Joneja OP, Plaschy M, Jatuff F (2001) Ann Nucl Chem 27:701–713

    Article  Google Scholar 

  50. Peters NJ, Brockman JD, Robertson JD (2009) J Radioanal Nucl Chem 282:255–259

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, N.J., Brockman, J.D. & Robertson, J.D. A new approach to single-comparator instrumental neutron activation analysis. J Radioanal Nucl Chem 291, 467–472 (2012). https://doi.org/10.1007/s10967-011-1203-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1203-y

Keywords

Navigation