Skip to main content
Log in

Characterization of depleted uranium oxides fabricated using different processing methods

  • Application of Nuclear Techniques to National Security and Treaty Monitoring
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Identifying both physical and chemical characteristics of Special Nuclear Material (SNM) production processes is the corner stone of nuclear forensics. Typically, processing markers are based on measuring an interdicted sample’s bulk chemical properties, such as the elemental or isotopic composition, or focusing on the chemical and physical morphology of only a few particles. Therefore, it is imperative that known SNM processes be fully characterized from bulk to trace level for each particle size range. This report outlines a series of particle size measurements and fractionation techniques that can be applied to a bulk SNM powders, categorizing both chemical and physical properties in discrete particle size fractions. This will be demonstrated by characterizing the process signatures of a series of different depleted uranium oxides prepared at increasing firing temperatures (350–1100 °C). Results will demonstrate how each oxides’ material density, particle size distribution, and morphology varies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Condit, UCRL-ID-114164, 1993.

  2. M. J. Kleeman, J. J. Schauer, G. R. Cass, Environ. Sci. Technol., 33 (1999) 3516.

    Article  CAS  Google Scholar 

  3. A. G. Allen, E. Nemitz, J. P. Shi, R. M. Harrison, J. C. Greenwood, Atmos. Environ., 35 (2001) 4581.

    Article  CAS  Google Scholar 

  4. V. A. Kashparov, Y. A. Ivanov, S. I. Zvarisch, V. P. Protsak, Y. V. Khomutinin, A. D. Kurepin, E. M. Pazukhin, Nucl. Technol., 114 (1996) 246.

    CAS  Google Scholar 

  5. B. Salbu, T. Krekling, O. C. Lind, D. H. Oughton, M. Drakopoulos, A. Simionovici, I. Snigireva, A. Snigirev, T. Weitkamp, F. Adams, K. Janssens, V. A. Kashparov, Nucl. Instr. Meth. Phys. Res., A467–468 (2001) 1249.

    Google Scholar 

  6. B. Salbu, K. Jannssens, O. C. Lind, K. Proost, P. R. Danesi, J. Environ. Radioact., 64 (2003) 167.

    Article  CAS  Google Scholar 

  7. X. Machuron-Mandard, C. Madic, J. Alloys Comp., 235 (1996) 216.

    Article  CAS  Google Scholar 

  8. V. A. Marple, K. L. Rubow, S. M. Behm, Aerosol Sci. Technol., 14 (1991) 434.

    Article  CAS  Google Scholar 

  9. MSP Corporation, SOP.

  10. M. Benedict, T. H. Pigford, H. W. Levi, Nuclear Chemical Engineering, 2nd ed., McGraw-Hill, Inc., New York, 1981, p. 224.

    Google Scholar 

  11. E. H. P. Cordfunke, A. A. Van Der Giessen, J. Nucl. Mater., 24 (1967) 141.

    Article  CAS  Google Scholar 

  12. W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, Inc., New York, 1999.

    Google Scholar 

  13. T. C. Miller, H. L. Dewitt, G. J. Havrilla, Spectrochim. Acta, B60 (2005) 1458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Hastings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hastings, E.P., Lewis, C., FitzPatrick, J. et al. Characterization of depleted uranium oxides fabricated using different processing methods. J Radioanal Nucl Chem 276, 475–481 (2008). https://doi.org/10.1007/s10967-008-0529-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-008-0529-6

Keywords

Navigation