Skip to main content
Log in

Adsorption of uranium(VI) onto Ulva sp.-sepiolite composite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ulva sp. and sepiolite were used to prepare composite adsorbent. The adsorption of uranium(VI) from aqueous solutions onto Ulva sp.-sepiolite has been studied by using a batch adsorber. The parameters that affect the uranium(VI) adsorption, such as solution pH, initial uranium(VI) concentration, and temperature, have been investigated and the optimum conditions determined. The adsorption patterns of uranium on the composite adsorbent followed the Freundlich and Dubinin-Radushkevich (D-R) isotherms. The Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models have been applied and the data correlate well with Freundlich model. The sorption is physical in nature (sorption energy, E = 4.01 kJ/mol). The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated from the slope and intercept of lnK d vs. 1/T plots. Thermodynamic parameters (ΔH ads = −22.17 kJ/mol, ΔS ads = −17.47 J/mol·K, ΔG o ads (298.15 K) = −16.96 kJ/mol) show the exothermic heat of adsorption and the feasibility of the process. The results suggested that the Ulva sp-sepiolite composite adsorbent is suitable as a sorbent material for recovery and biosorption/adsorption of uranium ions from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Shawky, M. Abdel-Geleel, A. Aly, J. Radioanal. Nucl. Chem., 265 (2005) 81.

    Article  CAS  Google Scholar 

  2. R. Qadeer, J. Hanif, Radiochim. Acta, 65 (1994) 259.

    CAS  Google Scholar 

  3. R. Qadeer, J. Hanif, M. Khan, M. Saleem, Radiochim. Acta, 68 (1995) 197.

    CAS  Google Scholar 

  4. C. Aharoni, S. Sideman, E. Hoffer, J. Chem. Technol. Biotechnol., 29 (1979) 404.

    CAS  Google Scholar 

  5. S. Aksoyoglu, J. Radioanal. Nucl. Chem., 134 (1989) 393.

    Article  CAS  Google Scholar 

  6. C. A. Sikalidis, C. Alexiades, Toxicol. Environ. Chem., 20–21 (1989) 175.

    Google Scholar 

  7. M. M. Badei Abdel, I. M. El-Naggar, A. A. El-Belihi, H. M. Aly, H. F. Aly, Radiochim. Acta, 56 (1992) 89.

    Google Scholar 

  8. S. K. Milonjic, D. J. M. Cokesa, R. V. Stevanovic, J. Radioanal. Nucl. Chem., 158 (1992) 79.

    Article  CAS  Google Scholar 

  9. R. Qadeer, J. Hanif, M. Saleem, M. Afzal, J. Radioanal. Nucl. Chem., 165 (1992) 243.

    Article  CAS  Google Scholar 

  10. E. Galan, Clay Miner., 31 (1996) 443.

    Article  CAS  Google Scholar 

  11. A. Singer, Palygorskite and sepiolite group minerals, in: Minerals in Soil Environment, J. B. Dixon, S. B. Weed (Eds), Soil Science Society of America, Madison, WI, USA, 1989, p. 829.

    Google Scholar 

  12. A. García-Sánchez, A. Alastuey, X. Ouerol, Sci. Total Environ., 242 (1999) 179.

    Article  Google Scholar 

  13. M. F. Brigatti, L. Medici, L. Poppi, Appl. Clay Sci., 11 (1996) 43.

    Article  CAS  Google Scholar 

  14. I. Dékany, L. Turi, A. Fonseca, J. B. Nagy, Appl. Clay Sci., 14 (1999) 141.

    Article  Google Scholar 

  15. R. L. Frost, Z. Ding, Thermochim. Acta, 397 (2003) 119.

    Article  CAS  Google Scholar 

  16. A. R. Türker, H. Baĝ, B. Erdoĝan, Fresenius J. Anal. Chem., 357 (1997) 351.

    Article  Google Scholar 

  17. S. Balci, Y. Dincel, Chem. Eng. Process, 41 (2002) 79.

    Article  CAS  Google Scholar 

  18. B. Volesky, Biosorption of Heavy Metals, CRC Press, Boca Raton, FL, 1990.

    Google Scholar 

  19. M. E. Treen-Sears, B. Volesky, R. J. Neufeld, Biotechnol. Bioeng., 26 (1984) 123.

    Article  Google Scholar 

  20. M. A. Hashim, K. H. Chu, Chem. Eng. J., 97 (2004) 249.

    Article  CAS  Google Scholar 

  21. S. Schiewer, M. H. Wong, Chemosphere, 41 (2000) 271.

    Article  CAS  Google Scholar 

  22. Z. Aksu, Process Biochem., 38 (2002) 89.

    Article  CAS  Google Scholar 

  23. C. J. Daughney, J. B. Fein, Y. Nathan, Chem. Geol., 144 (1998) 161.

    Article  CAS  Google Scholar 

  24. H. Farrah, W. F. Pickering, Aust. J. Chem., 30 (1977) 1417.

    CAS  Google Scholar 

  25. W. P. Inskeep, J. Baham, Soil Sci. Soc. Am. J., 47 (1983) 660.

    CAS  Google Scholar 

  26. R. Fujiyoshi, A. S. Eugene, M. Katayama, Appl. Radiation Isotopes, 43 (1992) 1223.

    CAS  Google Scholar 

  27. P van Bladel, P. HalenHand Cloose, Clay Minerals, 28 (1993) 33.

    Article  Google Scholar 

  28. B. Volesky, Z. R. Holan, Biotechnol. Prog., 11 (1995) 235.

    Article  CAS  Google Scholar 

  29. L. Y. Li, R. S. Li, Can. Geotech. J., 37 (2000) 296.

    Article  CAS  Google Scholar 

  30. E. Dinelli, F. Tateo, Mineral Mag., 65 (2001) 121.

    Article  CAS  Google Scholar 

  31. W. M. Dong, X. K. Wang, X. Y. Bian, A. X. Wang, J. Z. Du, Z. Y. Tao, Appl. Radiation Isotopes, 54 (2001) 603.

    Article  CAS  Google Scholar 

  32. G. W. Garnham, G. A. Codd, G. M. Gadd, Microbial. Ecol., 25 (1991) 71.

    Google Scholar 

  33. V. M. Kadoshnikov, B. P. Zlobenko, N. N. Zhdanova, T. I. Redchitz, Studies of application of micromycetes and clay composition for decontamination of building materials, in: Proc. HLM, LLW, Mixed Wastes and Environmental Restoration — Working Towards a Cleaner Environment, WM’95, Tucson, Arizona, 1995, p. 61.

  34. G. F. Morley, G. M. Gadd, Mycol. Res., 99 (1995) 1429.

    Article  CAS  Google Scholar 

  35. D. R. Corbin, B. F. Burgess, A. J. Vega, R. D. Farelee, Anal. Chem., 59 (1987) 2722.

    Article  CAS  Google Scholar 

  36. C. A. Francais, Anal. Chem., 30 (1958) 50.

    Article  Google Scholar 

  37. T. M. Florence, AAEC/TM552, 1970, Paper 5.

  38. D. Read, T. A. Lawless, R. J. Sims, K. R. Butter, J. Contam. Hydrol., 13 (1993) 277.

    Article  CAS  Google Scholar 

  39. M. Z.-C. Hu, J. M. Norman, N. B. Faison, M. Reeves, Biotechnol. Bioeng., 51 (1996) 237.

    Article  Google Scholar 

  40. A. Krestou, A. Xenidis, D. Panias, Miner. Eng., 16 (2003)1363.

    Article  CAS  Google Scholar 

  41. C. Hennig, T. Reich, R. Dahn, A. M. Scheidegger, Radiochim. Acta, 90 (2002) 653.

    Article  CAS  Google Scholar 

  42. E. R. Sylester, E. A. Hudson, P. G. Allen, Geochim. Cosmochim. Acta, 64 (2000) 2431.

    Article  Google Scholar 

  43. M. Saleem, M. Afzal, R. Qadeer, J. Hanif, Separ. Sci. Technol., 27 (1992) 239.

    Article  CAS  Google Scholar 

  44. S. M. Hasany, M. M. Saeed, M. Ahmed, J. Radioanal. Nucl. Chem., 252 (2002) 477.

    Article  CAS  Google Scholar 

  45. C. J. Daughney, J. B. Fein, Y. Nathan, Chem. Geol., 144 (1998) 161.

    Article  CAS  Google Scholar 

  46. M. M. Saeed, J. Radioanal. Nucl. Chem., 256 (2003) 73.

    Article  CAS  Google Scholar 

  47. S. A. Khan, R. Rehman, M. A. Khan, Waste Managem., 15 (1995) 271.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Donat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donat, R., Esen, K., Cetisli, H. et al. Adsorption of uranium(VI) onto Ulva sp.-sepiolite composite. J Radioanal Nucl Chem 279, 253–261 (2009). https://doi.org/10.1007/s10967-007-7243-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-7243-7

Keywords

Navigation