Skip to main content

Advertisement

Log in

Carbon–Silica Composites from Sago Waste for the Removal of Chromium, Lead, and Copper from Aqueous Solution: Kinetic and Equilibrium Isotherm Studies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Utilizing agricultural wastes into value-added products of a low-cost adsorbent has become of interest in recent years. In this study, sago-silica composite with a ratio of 80:20 (w/w%) was prepared via chemical grafting of abundantly available sago waste and rice husk. The physicochemical properties of the composites were characterized, and their efficiencies as adsorbents on the removal of chromium (Cr), lead (Pb), and copper (Cu) in aqueous media were studied as a function of pH, adsorbent dosage, initial concentration, and contact time. Results showed that the sago-silica composite has a more extensive surface area of 227.7 m2/g compared to SAC (167.3 m2/g). The adsorption of Cr and Cu gave excellent monolayer and heterolayer adsorption on sago-silica composite represented by Langmuir and Freundlich’s isotherm based on coefficient regression, R2 > 0.9. Pseudo-second-order kinetics model showed best fitted with excellent adsorption capacity qe of Cr, Pb, and Cu adsorption on sago-silica composites, which demonstrated the occurrence of chemisorption process between the composite and metal ions. The composite from carbon–silica is one of the cost-effective natural sorbents which demonstrate excellent removal of heavy metal from the aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data, generated from the experiment, supporting the findings of this study are available within the article and its supplementary information files.

References

  • Ademiluyi, F. T., & Nze, J. C. (2016). Multiple adsorption of heavy metal ions in aqueous solution using activated carbon from Nigerian bamboo. International Journal of Research in Engineering and Technology, 5(1), 164–169.

    Article  Google Scholar 

  • Alam, M. M., Hossain, M. A., Hossain, M. D., Johir, M. A. H., Hossen, J., Rahman, M. S., Zhou, J. L., Hasan, A., Karmakar, A. K., & Ahmed, M. B. (2020). The potentiality of rice husk-derived activated carbon: From synthesis to application. Processes, 8(2), 203. https://doi.org/10.3390/pr8020203

    Article  CAS  Google Scholar 

  • Cuske, M., Gersztyn, L., & Karczewska, A. (2013). The influence of pH on solubility of copper in soils contaminated by copper industry in Legnica. Civil and Environmental Engineering Reports, 11, 31–39.

    Google Scholar 

  • Daochalermwong, A., Chanka, N., Songsrirote, K., Dittanet, P., Niamnuy, C., & Seubsai, A. (2020). Removal of heavy metal ions using modified celluloses prepared from pineapple leaf fiber. ACS Omega, 5(10), 5285–5296. https://doi.org/10.1021/acsomega.9b04326

    Article  CAS  Google Scholar 

  • Gao, J., Kong, D., Wang, Y., Wu, J., Sun, S., & Xu, P. (2013). Production of mesoporous activated carbon from tea fruit peel residues and its evaluation of methylene blue removal from aqueous solutions. BioResources, 8(2), 2145–2160.

    Article  CAS  Google Scholar 

  • Heidarinejad, Z., Dehghani, M., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: A review. Environmental Chemistry Letters, 18, 393–415. https://doi.org/10.1007/s10311-019-00955-0

    Article  CAS  Google Scholar 

  • Hegde, G., Abdul Manaf, S. A., Kumar, A., Ali, G. A., Chong, K. F., Ngaini, Z., & Sharma, K. V. (2015). Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustainable Chemistry & Engineering, 3(9), 2247–2253. https://doi.org/10.1021/acssuschemeng.5b00517

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  • Imran-Shaukat, M., Wahi, R., Rosli, N. R., Aziz, S. M., & Ngaini, Z. (2021). Chemically modified palm kernel shell biochar for the removal of heavy metals from aqueous solution. IOP Conference Series: Earth and Environmental Science, 765, 012019. https://doi.org/10.1088/1755-1315/765/1/012019

    Article  Google Scholar 

  • Karnib, M., Kabbani, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia, 50, 113–120. https://doi.org/10.1016/j.egypro.2014.06.014

    Article  CAS  Google Scholar 

  • Kate, G. U., & Chaurasia, A. S. (2018). Gasification of rice husk in two-stage gasifier to produce syngas, silica and activated carbon. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects, 40(4), 466–471. https://doi.org/10.1080/15567036.2017.1423418

    Article  CAS  Google Scholar 

  • Ludueña, L. N., Fasce, D. P., Alvarez, V. A., & Stefani, P. M. (2011). Nanocellulose from rice husk following alkaline treatment to remove silica. Bio Resources, 6(2), 1440–1453

  • Makshut, N. A., Ngaini, Z., Wahi, W., Hussain, H., Mahmut, N. I., & Bahrin, N. Q. (2020). Nano-sized absorbent from pyrolysed sago activated sludge for removal of Pb(II) from aqueous solution. Pertanika Journal of Science and Technology, 28, 893–916.

    Google Scholar 

  • Malik, D., Jain, C., & Yadav, A. (2016). Removal of heavy metals from emerging cellulosic low-cost adsorbents: A review. Applied Water Science, 7, 2113–2136. https://doi.org/10.1007/s13201-016-0401-8

    Article  CAS  Google Scholar 

  • Manaf, S. A. A., Roy, P., Sharma, K. V., Ngaini, Z., Malgras, V., Aldalbahi, A., Alshehri, S. M., Yamauchi, Y., & Hegde, G. (2015). Catalyst-free synthesis of carbon nanospheres for potential biomedical applications: Waste to wealth approach. RSC Advances, 5(31), 24528–24533. https://doi.org/10.1039/C4RA14693J

    Article  CAS  Google Scholar 

  • Ngaini, Z., Noh, F., & Wahi, R. (2018). Facile sorbent from esterified cellulosic sago waste for engine oil removal in marine environment. International Journal of Environmental Science and Technology, 15(2), 341–348. https://doi.org/10.1007/s13762-017-1389-9

    Article  CAS  Google Scholar 

  • Ngaini, Z., Wahi, R., Hussain, H., Bahrin, N. Q., & Hasana, N. H. (2021a). Heavy metal adsorbent of carbon from sago liquid biowaste for sustainable technology. In M. A. A. Zaini, M. Jusoh, & N. Othman (Eds.), Proceedings of the 3rd International Conference on Separation Technology Lecture Notes in Mechanical Engineering (pp. 205–216). Springer. https://doi.org/10.1007/978-981-16-0742-4_14

    Chapter  Google Scholar 

  • Ngaini, Z., Jamil, N., Wahi, R., Shahrom, F. D., Ahmad, Z. A., & Farooq, S. (2021b). Convenient conversion of palm fatty acid distillate to biodiesel via rice husk ash catalyst. BioEnergy Research, 1-11https://doi.org/10.1007/s12155-021-10331-y

  • Onundi, Y. B., Mamun, A. A., Al Khatib, M. F., & Ahmed, Y. M. (2010). Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. International Journal of Environmental Science & Technology, 7(4), 751–758.

    Article  CAS  Google Scholar 

  • Özsin, G., Kılıç, M., Apaydin-Varol, E., & Pütün, A. (2019). Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: Equilibrium, kinetic, and thermodynamic studies. Applied Water Science, 9, 1–14. https://doi.org/10.1007/s13201-019-0942-8

    Article  CAS  Google Scholar 

  • Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carida bast. Arabian Journal of Chemistry, 10, 1445–1451. https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  CAS  Google Scholar 

  • Quek, S. Y., Wase, D. A. J., & Forster, C. F. (1998). The use of sago waste for the sorption of lead and copper. Water SA, 24(3), 251–256.

    CAS  Google Scholar 

  • Rajan, Y., Ngaini, Z., & Wahi, R. (2019). Novel adsorbent from sago-grafted silica for removal of methylene blue. International Journal of Environmental Science and Technology, 16(8), 4531–4542. https://doi.org/10.1007/s13762-018-2043-x

    Article  CAS  Google Scholar 

  • Supriya, S., Sriram, G., Ngaini, Z., Kavitha, C., Kurkuri, M., De Padova, I. P., & Hegde, G. (2020). The role of temperature on physical–chemical properties of green synthesized porous carbon nanoparticles. Waste and Biomass Valorization, 11(7), 3821–3831. https://doi.org/10.1007/s12649-019-00675-0

    Article  CAS  Google Scholar 

  • Valle-Vigón, P., Sevilla, M., & Fuertes, A. B. (2012). Sulfonated mesoporous silica–carbon composites and their use as solid acid catalysts. Applied Surface Science, 261, 574–583. https://doi.org/10.1016/j.apsusc.2012.08.059

    Article  CAS  Google Scholar 

  • Wahi, R., Ngaini, Z., & Jok, V. U. (2009). Removal of mercury, lead and copper from aqueous solution by activated carbon of palm oil empty fruit bunch. World Applied Sciences Journal, 5, 84–91.

    Google Scholar 

  • Wahi, R., Chuah, A. L., Nourouzi, M. M., Ngaini, Z., & Choong-Shean-Yaw, T. (2017). Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent. International Journal of Chemical Engineering, 5(1), 170–177. https://doi.org/10.1016/j.jece.2016.11.038

    Article  CAS  Google Scholar 

  • Zhao, M., Xu, Y., Zhang, C., Rong, H., & Zeng, G. (2016). New trends in removing heavy metals from wastewater. Applied Microbiology and Biotechnology, 100, 6509–6518. https://doi.org/10.1007/s00253-016-7646-x

    Article  CAS  Google Scholar 

  • Zohre, S., Ataallah, S. G., & Mehdi, A. (2010). Experimental study of methylene blue adsorption from aqueous solutions onto carbon nanotubes. International Journal of Water Resources and Environmental Engineering, 2(2), 016–028. https://doi.org/10.5897/IJWREE.900002

    Article  Google Scholar 

Download references

Funding

This study received funding from the University of Malaysia Sarawak from Tun Openg Sago Research Chair (F07/TOC/1742/2018).

Author information

Authors and Affiliations

Authors

Contributions

YR prepared the adsorbent and demonstrated the removal of Cr, Pb, and Cu in aqueous media. ZN and RW analyzed and interpreted the data. ZN and RW equally contributed in writing the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zainab Ngaini or Rafeah Wahi.

Ethics declarations

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 730 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngaini, Z., Rajan, Y. & Wahi, R. Carbon–Silica Composites from Sago Waste for the Removal of Chromium, Lead, and Copper from Aqueous Solution: Kinetic and Equilibrium Isotherm Studies. Water Air Soil Pollut 232, 441 (2021). https://doi.org/10.1007/s11270-021-05393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05393-9

Keywords

Navigation