Skip to main content

Advertisement

Log in

A review on polyurethane based multifunctional materials synthesis for advancement in textile coating applications

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyurethanes (PUs) are among the most commonly used, versatile, and scientifically studied polymer in the world. It is an essential polymer to mitigate day to day demands of modern society. Polyurethane became popular in the textile industry as environmentally friendly coating materials. Textile material coated with one or more polymers have been developed continuously for several decades to improve properties and multiple advantages over the classic textile material. By choosing the appropriate polymer, coating technique, and manufacturing parameters, it is possible to create high-performance coating material with improved properties. Polyurethane highly used for coating in textile industry among other polymers because of its superior flexibility, weather resistance, and wear resistance. Several textile properties, including wear comfort, tensile strength, tear strength, wrinkle resistance, water contact angle, antibacterial properties, colour fastness, etc., can be significantly enhanced by polyurethanes coating. This article contains a comprehensive review of recent developments and research works concerning polyurethane's direct involvement as coatings to the textile substrates. This feature article presents an up-to-date review of polyurethane in textile applications. The various methods to fabricate these polyurethanes and the performances of the polyurethanes in textile material are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Fig. 7
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29

Similar content being viewed by others

References

  1. Hiemenz PC, Lodge TP (2007) Polymer chemistry. CRC press. https://doi.org/10.1201/9781420018271

  2. Smith WC (2010) Smart textile coatings and laminates. Elsevier

  3. Kausar A (2018) Polymer coating technology for high performance applications: Fundamentals and advances. Journal of Macromolecular Science, Part A 55(5):440–448. https://doi.org/10.1080/10601325.2018.1453266

    Article  CAS  Google Scholar 

  4. Akovali G (2012) Advances in polymer coated textiles. Smithers Rapra

  5. Bidoki SM, Wittlinger R, Alamdar AA, Burger J (2006) Eco-efficiency analysis of textile coating materials. J Iran Chem Soc 3(4):351–359. https://doi.org/10.1007/BF03245958

    Article  CAS  Google Scholar 

  6. Akindoyo JO, Beg M, Ghazali S, Islam M, Jeyaratnam N, Yuvaraj A (2016) Polyurethane types, synthesis and applications–a review. RSC Adv 6(115):114453–114482

    Article  CAS  Google Scholar 

  7. Hepburn C (2012) Polyurethane elastomers. Springer Science & Business Media

  8. Wang FL (1998) Polydimethylsiloxane modification of segmented thermoplastic polyurethanes and polyureas. Virginia Polytechnic Institute and State University

  9. Rafiee Z, Keshavarz V (2015) Synthesis and characterization of polyurethane/microcrystalline cellulose bionanocomposites. Prog Org Coat 86:190–193. https://doi.org/10.1016/j.porgcoat.2015.05.013

    Article  CAS  Google Scholar 

  10. Jeong J-O, Park J-S, Lim Y-M (2016) Development of styrene-grafted polyurethane by radiation-based techniques. Materials. https://doi.org/10.3390/ma9060441

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lu S, Feng Y, Zhang P, Hong W, Chen Y, Fan H, Yu D, Chen X (2021) Preparation of flame-retardant polyurethane and its applications in the leather industry. Polymers. https://doi.org/10.3390/polym13111730

    Article  PubMed  PubMed Central  Google Scholar 

  12. Polyurethane market size, 2021 to 2030 (USD Billion). 2022; Available from: https://www.globenewswire.com/en/news-release/2022/07/06/2474528/0/en/Polyurethane-Market-Size-to-Hit-Around-USD-112-45-Bn-by-2030.html

  13. Chang W-H, Scriven RL, Peffer JR, Porter S Jr (1973) Advances in polyurethane coatings (1969 to early 1972). Ind Eng Chem Prod Res Dev 12(4):278–288

    Google Scholar 

  14. Šebenik U, Krajnc M (2007) Influence of the soft segment length and content on the synthesis and properties of isocyanate-terminated urethane prepolymers. Int J Adhes Adhes 27(7):527–535. https://doi.org/10.1016/j.ijadhadh.2006.10.001

    Article  CAS  Google Scholar 

  15. Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32(3):352–418. https://doi.org/10.1016/j.progpolymsci.2006.05.003

    Article  CAS  Google Scholar 

  16. Mayr AE, Cook WD, Edward GH, Murray GJ (2000) Cure and properties of unfoamed polyurethanes based on uretonimine modified methylene–diphenyl diisocyanate. Polym Int 49(3):293–301. https://doi.org/10.1002/(SICI)1097-0126(200003)49:3<293::AID-PI367>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  17. Rahman MM, Rabbani MM, Saha JK (2020) Polyurethane and Its Derivatives, in Functional Polymers. pp. 1–16. Springer International Publishing: Cham, p 1–16. https://doi.org/10.1007/978-3-319-92067-2_7-1

  18. de Souza FM, Kahol PK, Gupta RK (2021) Introduction to Polyurethane Chemistry. Polyurethane Chemistry: Renewable Polyols and Isocyanates. American Chemical Society, pp 1–24

    Google Scholar 

  19. Zhang B, Xu Y, Ma S, Wang L, Liu C, Xu W, Shi J, Qiao W, Yang H (2021) Small-diameter polyurethane vascular graft with high strength and excellent compliance. J Mech Behav Biomed Mater 121:104614. https://doi.org/10.1016/j.jmbbm.2021.104614

    Article  CAS  PubMed  Google Scholar 

  20. Yang H, Zhu G, Zhang Z, Wang Z, Fang J, Xu W (2012) Influence of weft-knitted tubular fabric on radial mechanical property of coaxial three-layer small-diameter vascular graft. J Biomed Mater Res B Appl Biomater 100(2):342–349

    Article  PubMed  Google Scholar 

  21. Das A, Mahanwar P (2020) A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research 3(3):93–101. https://doi.org/10.1016/j.aiepr.2020.07.002

    Article  Google Scholar 

  22. Miller M (2005) Polymers in cementitious materials. iSmithers Rapra Publishing

  23. Sharmin E, Zafar F (2012) Polyurethane: an introduction. Polyurethane 3–16

  24. Saxena PK, Raut KG, Srinivasan SR, Sivaram S, Rawat RS, Jain RK (1991) Polyurethane waterproofing coating for building applications. Constr Build Mater 5(4):208–210. https://doi.org/10.1016/0950-0618(91)90052-M

    Article  Google Scholar 

  25. Savani NG, Naveen T, Dholakiya BZ (2023) A review on the synthesis of maleic anhydride based polyurethanes from renewable feedstock for different industrial applications. J Polym Res 30(5):175. https://doi.org/10.1007/s10965-023-03543-7

    Article  CAS  Google Scholar 

  26. Liu Z, Zhu X, Tian Y, Zhou K, Cheng J, Zhang J (2022) Bio-based recyclable Form-Stable phase change material based on thermally reversible Diels-Alder reaction for sustainable thermal energy storage. Chem Eng J 448:137749. https://doi.org/10.1016/j.cej.2022.137749

    Article  CAS  Google Scholar 

  27. Li H, Xu F, Wang J, Zhang J, Wang H, Li Y, Sun J (2023) Self-healing fluorinated poly(urethane urea) for mechanically and environmentally stable, high performance, and versatile fully self-healing triboelectric nanogenerators. Nano Energy 108:108243. https://doi.org/10.1016/j.nanoen.2023.108243

    Article  CAS  Google Scholar 

  28. Zhao J, Zhang Y, Jia Y, Bao L, Yang L, Xiao S, Xie J, Wang J (2022) Photomechaelectric nanogenerator Matter 5(11):3977–3996. https://doi.org/10.1016/j.matt.2022.07.027

    Article  CAS  Google Scholar 

  29. Jalal Uddin A (2010) 5 - Coatings for technical textile yarns, in Technical Textile Yarns, R. Alagirusamy A. Das, Editors. Woodhead Publishing, p 140–184

  30. Smith WC (2010) 1 - Overview of textile coating and lamination, in Smart Textile Coatings and Laminates, William C. Smith, Editor. Woodhead Publishing, p 3–9

  31. Sandin G, Peters GM (2018) Environmental impact of textile reuse and recycling – A review. J Clean Prod 184:353–365. https://doi.org/10.1016/j.jclepro.2018.02.266

    Article  CAS  Google Scholar 

  32. Billah SMR (2019) Textile Coatings, in Functional Polymers, Mohammad Abu Jafar Mazumder, Heather SheardownAmir Al-Ahmed, Editors. Springer International Publishing: Cham, p 825–882

  33. Shim E (2019) 2 - Coating and laminating processes and techniques for textiles, in Smart Textile Coatings and Laminates (Second Edition), William C. Smith, Editor. Woodhead Publishing, p 11–45

  34. Ghosh SK (2006) Functional coatings and microencapsulation: a general perspective. Funct Coat 1–28. https://doi.org/10.1002/3527608478.ch1

  35. Kovačević S, Ujević D, Brnada S (2010) Coated textile materials. Woven Fabric Eng 241

  36. Jahid MA, Hu J, Wong K, Wu Y, Zhu Y, Sheng Luo HH, Zhongmin D (2018) Fabric coated with shape memory polyurethane and its properties. Polymers. https://doi.org/10.3390/polym10060681

    Article  PubMed  PubMed Central  Google Scholar 

  37. Han Y, Hu J, Xin Z (2019) Facile preparation of high solid content waterborne polyurethane and its application in leather surface finishing. Prog Org Coat 130:8–16. https://doi.org/10.1016/j.porgcoat.2019.01.031

    Article  CAS  Google Scholar 

  38. Gong R, Cao H, Zhang H, Qiao L, Wang X (2021) UV-curable cationic waterborne polyurethane from CO2-polyol with excellent water resistance. Polymer 218:123536. https://doi.org/10.1016/j.polymer.2021.123536

    Article  CAS  Google Scholar 

  39. Fiori DE (1997) Two-component water reducible polyurethane coatings. Prog Org Coat 32(1):65–71. https://doi.org/10.1016/S0300-9440(97)00076-3

    Article  CAS  Google Scholar 

  40. Noreen A, Zia KM, Zuber M, Tabasum S, Saif MJ (2016) Recent trends in environmentally friendly water-borne polyurethane coatings: A review. Korean J Chem Eng 33(2):388–400. https://doi.org/10.1007/s11814-015-0241-5

    Article  CAS  Google Scholar 

  41. Honarkar H (2018) Waterborne polyurethanes: A review. J Dispersion Sci Technol 39(4):507–516. https://doi.org/10.1080/01932691.2017.1327818

    Article  CAS  Google Scholar 

  42. Usman A, Zia KM, Zuber M, Tabasum S, Rehman S, Zia F (2016) Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int J Biol Macromol 86:630–645. https://doi.org/10.1016/j.ijbiomac.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  43. Mao H, Yang F, Wang C, Wang Y, Yao D, Yin Y (2015) Anthraquinone chromophore covalently bonded blocked waterborne polyurethanes: synthesis and application. RSC Adv 5(39):30631–30639

    Article  CAS  Google Scholar 

  44. Meng QB, Lee S-I, Nah C, Lee Y-S (2009) Preparation of waterborne polyurethanes using an amphiphilic diol for breathable waterproof textile coatings. Prog Org Coat 66(4):382–386. https://doi.org/10.1016/j.porgcoat.2009.08.016

    Article  CAS  Google Scholar 

  45. Misbah BIA, Zia KM, Bhatti HN, Shahid M (2019) Synthesis, biological efficiency evaluation and application of sodium alginate-based polyurethane dispersions using cycloaliphatic isocyanate, as antibacterial textile coating. J Ind Text 50(10):1625–1642. https://doi.org/10.1177/1528083719867445

    Article  CAS  Google Scholar 

  46. Fan W, Zhu Y, Xi G, Huang M, Liu XD (2016) Wear-resistant cotton fabrics modified by PU coatings prepared via mist polymerization. J Appl Polym Sci 133(7). https://doi.org/10.1002/app.43024

  47. Bouasria A, Nadi A, Boukhriss A, Hannache H, Cherkaoui O, Gmouh S (2020) Advances in polymer coating for functional finishing of textiles. Front Text Mater 61–86. https://doi.org/10.1002/9781119620396.ch3

  48. Top ten exporters of textile. Available from: https://www.fashionabc.org/global-textile-industry-overview-china-u-s-europe-dominates-market/

  49. Allafi F, Hossain MS, Lalung J, Shaah M, Salehabadi A, Ahmad MI, Shadi A (2022) Advancements in applications of natural wool fiber. J Nat Fibers 19(2):497–512

    Article  CAS  Google Scholar 

  50. Kozłowski RM, Mackiewicz-Talarczyk M (2020) 1A - Introduction to natural textile fibres, in Handbook of Natural Fibres (Second Edition), Ryszard M. Kozłowski Maria Mackiewicz-Talarczyk, Editors. Woodhead Publishing. p. 1–13. https://doi.org/10.1016/B978-0-12-818398-4.00001-3

  51. Jabran K, Ul-Allah S, Chauhan BS, Bakhsh A (2019) An introduction to global production trends and uses, history and evolution, and genetic and biotechnological improvements in cotton. Cotton Prod 1–22. https://doi.org/10.1002/9781119385523.ch1

  52. Jabran K, Chauhan BS (2019) Cotton production. John Wiley & Sons

  53. Xia G, Zhou Q, Xu Z, Zhang J, Zhang J, Wang J, You J, Wang Y, Nawaz H (2021) Transparent cellulose/aramid nanofibers films with improved mechanical and ultraviolet shielding performance from waste cotton textiles by in-situ fabrication. Carbohyd Polym 273:118569. https://doi.org/10.1016/j.carbpol.2021.118569

    Article  CAS  Google Scholar 

  54. Huang KS, Hwang MC, Chen JS, Lin SJ, Wang SP (2007) Application of mixed gel solution in the anti-wrinkle finishing of cotton fabrics. J Text Inst 98(2):169–176. https://doi.org/10.1533/joti.2005.0300

    Article  CAS  Google Scholar 

  55. Dong X, Xing T, Chen G (2020) Improving the anti-pilling performance of cellulose fiber blended knitted fabrics with 2,4,6-trichloropyrimidine treatment. Coatings. https://doi.org/10.3390/coatings10100969

    Article  Google Scholar 

  56. Dalbaşi E, Skayseri̇ GÖ (2015) A research about the effect of the antipilling treatments on different structured cotton knitted fabrics. Text Apparel 25(1):54–60

    Google Scholar 

  57. Lam YL, Kan CW, Yuen CWM (2010) Wrinkle-resistant finishing of cotton fabric with BTCA - the effect of co-catalyst. Text Res J 81(5):482–493. https://doi.org/10.1177/0040517510380777

    Article  CAS  Google Scholar 

  58. Angelova RA, Velichkova R, Sofronova D, Ganev I, Stankov P (2021) Consumption of electric energy in the production of cotton textiles and garments. IOP Conf Ser: Mater Sci Eng 1031(1):012030. https://doi.org/10.1088/1757-899X/1031/1/012030

    Article  Google Scholar 

  59. The top producing countries of cotton in the world for the crop years 2021–2022. 2022. Available from: https://www.statista.com/statistics/263055/cotton-production-worldwide-by-top-countries/.

  60. Lei W, Sun Y, Huang B, Zhou X (2018) Synthesis and application of polyurethane-modified silicone as finishing agent for cotton fabric. Fibers Polym 19(5):1024–1031. https://doi.org/10.1007/s12221-018-7931-7

    Article  CAS  Google Scholar 

  61. Mazzon G, Zahid M, Heredia-Guerrero JA, Balliana E, Zendri E, Athanassiou A, Bayer IS (2019) Hydrophobic treatment of woven cotton fabrics with polyurethane modified aminosilicone emulsions. Appl Surf Sci 490:331–342. https://doi.org/10.1016/j.apsusc.2019.06.069

    Article  CAS  Google Scholar 

  62. Yu X, Xiong Y, Li Z, Tang H (2020) Preparation and characterization of tris(trimethylsiloxy)silyl modified polyurethane acrylates and their application in textile treatment. Polymers. https://doi.org/10.3390/polym12081629

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mao H, Qiang S, Xu Y, Wang C (2017) Synthesis of polymeric dyes based on UV curable multifunctional waterborne polyurethane for textile coating. New J Chem 41(2):619–627

    Article  CAS  Google Scholar 

  64. Yang W, Zhou X (2021) Synthesis of salt-resistant hyperbranched waterborne polyurethane associative thickener and its application in textile printing. J Text Inst 1–11. https://doi.org/10.1080/00405000.2021.2020416

  65. Li Z-R, Jiang W-C, Wang L-J, Meng W-D, Qing F-L (2007) Synthesis and application of novel aqueous anionic polyurethane as a durable press finishing agent of cotton fabrics. Text Res J 77(4):227–232. https://doi.org/10.1177/0040517507078027

    Article  CAS  Google Scholar 

  66. Chen K, Gou W, Wang X, Zeng C, Ge F, Dong Z, Wang C (2018) UV-cured fluoride-free polyurethane functionalized textile with ph-induced switchable superhydrophobicity and underwater superoleophobicity for controllable oil/water separation. ACS Sustain Chem Eng 6(12):16616–16628. https://doi.org/10.1021/acssuschemeng.8b03851

    Article  CAS  Google Scholar 

  67. Cheng H, Kai S (1998) Easy-care finishing of silk fabrics with a novel multifunctional epoxide. Part 1. J Soc Dyers Colourists 114(12):359–362. https://doi.org/10.1111/j.1478-4408.1998.tb01938.x

    Article  Google Scholar 

  68. Cheng H, Yejuan J, Kai S (2000) Easy-care finishing of silk fabrics with a novel multifunctional epoxide. Part 2. Coloration Technol 116(7–8):204–207. https://doi.org/10.1111/j.1478-4408.2000.tb00039.x

    Article  CAS  Google Scholar 

  69. Kaplan DL, Fossey S, Mello CM, Arcidiacono S, Senecal K, Muller W, Stockwell S, Beckwitt R, Viney C, Kerkam K (1992) Biosynthesis and processing of silk proteins. MRS Bull 17(10):41–47. https://doi.org/10.1557/S0883769400046479

    Article  CAS  Google Scholar 

  70. Sadulloyevich JO (2022) Foreign trade tendencies of silk products: In case of Uzbekistan. Asian J Technol Manag Res ISSN 2249(0892)

  71. Yao GP, Zheng JH, Chen HF (2011) Preparation and application of VE microcapsules with polyurethane shell for skin-care textiles. Adv Mater Res Trans Tech Publ

  72. Cheng H, Yejuan J (2002) Wash-and-wear finishing of silk fabrics with a water-soluble polyurethane. Text Res J 72(11):1009–1012. https://doi.org/10.1177/004051750207201113

    Article  Google Scholar 

  73. Narayanan SC, Karpagam KR, Bhattacharyya A (2015) Nanocomposite coatings on cotton and silk fibers for enhanced electrical conductivity. Fibers Polym 16(6):1269–1275. https://doi.org/10.1007/s12221-015-1269-1

    Article  CAS  Google Scholar 

  74. Xu W, Ke G, Wu J, Wang X (2006) Modification of wool fiber using steam explosion. Eur Polymer J 42(9):2168–2173. https://doi.org/10.1016/j.eurpolymj.2006.03.026

    Article  CAS  Google Scholar 

  75. Russell IM (2009) 3 - Sustainable wool production and processing. In Sustainable Textiles, R. S. Blackburn, Editor. Woodhead Publishing, p 63–87. https://doi.org/10.1533/9781845696948.1.63

  76. Pekhtasheva E, Neverov A, Kubica S, Zaikov G (2011) Biodegradation and biodeterioration of some natural polymers. Polymers Research Journal 5(1):77–108

    CAS  Google Scholar 

  77. Shahidi S, Rashidi A, Ghoranneviss M, Anvari A, Wiener J (2010) Plasma effects on anti-felting properties of wool fabrics. Surf Coat Technol 205:S349. https://doi.org/10.1016/j.surfcoat.2010.08.003

    Article  CAS  Google Scholar 

  78. Wakida T, Cho S, Choi S, Tokino S, Lee M (1998) Effect of low temperature plasma treatment on color of wool and nylon 6 fabrics dyed with natural dyes. Text Res J 68(11):848–853. https://doi.org/10.1177/004051759806801110

    Article  CAS  Google Scholar 

  79. Doyle EK, Preston JWV, McGregor BA, Hynd PI (2021) The science behind the wool industry. The importance and value of wool production from sheep. Anim Front 11(2):15–23. https://doi.org/10.1093/af/vfab005

    Article  PubMed  PubMed Central  Google Scholar 

  80. Uğur ŞS, Sariişik AM (2014) Nano polyurethane based surface modification on the anti-felting functionalization of wool fabrics. Prog Org Coat 77(8):1249–1252. https://doi.org/10.1016/j.porgcoat.2014.03.025

    Article  CAS  Google Scholar 

  81. Memiş NK, Kaplan S (2020) Wool fabric having thermal comfort management function via shape memory polyurethane finishing. J Text Inst 111(5):734–744

    Article  Google Scholar 

  82. Memiş KN, Kaplan S (2020) Dual responsive wool fabric by cellulose nanowhisker reinforced shape memory polyurethane. J Appl Polym Sci 137(19):48674

    Article  Google Scholar 

  83. Shi J, Han X, Kelu Y (2014) A novel bio-functional finishing agent for wool based on waterborne polyurethane mixed with chitosan. Text Res J 84(11):1174–1182. https://doi.org/10.1177/0040517513517969

    Article  CAS  Google Scholar 

  84. Yamashita H, Nakano Y (2008) Polyester: properties, preparation and applications. Recent Developments in Modification of Cyanate Ester Resins A. Fainleib O. Grigoryeva 1:33

  85. Köpnick H, Schmidt M, Brügging W, Rüter J, Kaminsky W (2000) Polyesters. Ullmann's Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a21_227

  86. Dholakiya B (2012) Unsaturated polyester resin for specialty applications. Polyester 7:167–202

    Google Scholar 

  87. Ivanović T, Hischier R, Som C (2021) Bio-based polyester fiber substitutes: From GWP to a more comprehensive environmental analysis. Appl Sci. https://doi.org/10.3390/app11072993

    Article  Google Scholar 

  88. Dave J, Kumar R, Srivastava HC (1987) Studies on modification of polyester fabrics I: Alkaline hydrolysis. J Appl Polym Sci 33(2):455–477. https://doi.org/10.1002/app.1987.070330215

    Article  CAS  Google Scholar 

  89. Sun Y, Liu C, Hong Y, Liu R, Zhou X (2019) Synthesis and application of self-crosslinking and flame retardant waterborne polyurethane as fabric coating agent. Prog Org Coat 137:105323. https://doi.org/10.1016/j.porgcoat.2019.105323

    Article  CAS  Google Scholar 

  90. Sadu RB, Chen DH, Kucknoor AS, Guo Z, Gomes AJ (2014) Silver-doped TiO2/polyurethane nanocomposites for antibacterial textile coating. BioNanoScience 4(2):136–148. https://doi.org/10.1007/s12668-014-0125-x

    Article  Google Scholar 

  91. Wang W, Zhou Z, Liu N, Zhang X, Zhou H, Wang Y, Fang K, Wu T (2022) Improving biocompatibility of polyester fabrics through polyurethane/gelatin complex coating for potential vascular application. Polymers. https://doi.org/10.3390/polym14050989

    Article  PubMed  PubMed Central  Google Scholar 

  92. Deopura BL, Padaki NV (2015) Chapter 5 - Synthetic Textile Fibres: Polyamide, Polyester and Aramid Fibres, in Textiles and Fashion, Rose Sinclair, Editor. Woodhead Publishing, p 97–114. https://doi.org/10.1016/B978-1-84569-931-4.00005-2

  93. McKeen LW (2017) 8 - Polyamides (Nylons), in Film Properties of Plastics and Elastomers (Fourth Edition), Laurence W. McKeen, Editor. William Andrew Publishing, p 187–227. https://doi.org/10.1016/B978-0-12-813292-0.00008-3

  94. Azizi N, Chevalier Y, Majdoub M (2014) Isosorbide-based microcapsules for cosmeto-textiles. Ind Crops Prod 52:150–157. https://doi.org/10.1016/j.indcrop.2013.10.027

    Article  CAS  Google Scholar 

  95. Tsai H-C, Hong P-D, Yen M-S (2007) Preparation and physical properties of MDEA-based polyurethane cationomers and their application to textile coatings. Text Res J 77(9):710–720. https://doi.org/10.1177/0040517507080544

    Article  CAS  Google Scholar 

  96. Go CW, Yang JH, Kwak D-S, Kim G-W, Jeong HM (2015) Waterborne polyurethane modified with silicone macromer and the nylon airbag coated with it. Text Res J 86(19):2015–2021. https://doi.org/10.1177/0040517515619352

    Article  CAS  Google Scholar 

  97. Fayed AIH, El Amaim YA, Elgohary DH (2021) Enhancing the performance of cordura and ballistic nylon using polyurethane treatment for outer shell of bulletproof vest. J King Saud Univ - Eng Sci. https://doi.org/10.1016/j.jksues.2021.02.001

    Article  Google Scholar 

  98. Kinge A, Landage S, Wasif A (2013) Nonwoven for artificial leather. Int J Adv Res Eng Appl Sci 2(18):18–33

    Google Scholar 

  99. Okazaki K, Higuchi A, Imaeda N (1975) Artificial leather and method of preparation. Google Patents

  100. Jeong WY, Park JW, Kamijo M, Shimizu Y, An SK (2007) Characteristics of artificial leather for footwear-heat and moisture transport properties. Sen’i Gakkaishi 63(11):271–275

    Article  CAS  Google Scholar 

  101. Gatto V, Conca S, Bardella N, Beghetto V (2021) Efficient triazine derivatives for collagenous materials stabilization. Materials. https://doi.org/10.3390/ma14113069

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ma J, Cai K, Yang C, Li M, Pan X, Huang Y, Yao J, Zheng J, Shao J (2022) Synthesis and properties of photocurable polyurethane acrylate for textile artificial leather. Prog Org Coat 171:107017. https://doi.org/10.1016/j.porgcoat.2022.107017

    Article  CAS  Google Scholar 

  103. Shin EJ, Han SS, Choi SM (2018) Fabrication of highly electrical synthetic leather with polyurethane/poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonate). J Text Inst 109(2):241–247. https://doi.org/10.1080/00405000.2017.1337296

    Article  CAS  Google Scholar 

  104. Chao NPC (1963) Blending cotton and polyester fibers: effects of processing methods on fiber distribution and yarn properties. Georgia Inst Technol

  105. Baykal PD, Babaarslan O, Erol R (2006) Prediction of strength and elongation properties of cotton polyester-blended OE rotor yarns. Fibres Text East Eur 14(1):18

    CAS  Google Scholar 

  106. Raihan M (2016) An analysis for comparative study of polyester/cotton and polyester/ flax blended yarn. https://doi.org/10.13140/RG.2.1.2081.6406

  107. Butola BS (2008) 12 - Advances in functional finishes for polyester and polyamide-based textiles, in Polyesters and Polyamides, B. L. Deopura, R. Alagirusamy, M. JoshiB. Gupta, Editors. Woodhead Publishing, p 325–353. https://doi.org/10.1533/9781845694609.2.325

  108. Kumsa G, Gebino G, Ketema G (2021) One-bath one-step dyeing of polyester/cotton (PC) blends fabric with disperse dyes after acetylation of cotton. Discov Mater 1(1):19. https://doi.org/10.1007/s43939-021-00019-7

    Article  Google Scholar 

  109. Wang S, Salmon S (2022) Progress toward Circularity of Polyester and Cotton Textiles. Sustain Chem 3:376–403. https://doi.org/10.3390/suschem3030024

    Article  CAS  Google Scholar 

  110. Sidra Tabasum S, Zia KM, Parveen B, Shahid M (2022) Polyurethane dispersions prepared from vegetable oil and their application as textile finishes. Text Res J. https://doi.org/10.1177/00405175221107647

    Article  Google Scholar 

  111. Muzaffar S, Bhatti IA, Zuber M, Bhatti HN, Shahid M (2016) Synthesis, characterization and efficiency evaluation of chitosan-polyurethane based textile finishes. Int J Biol Macromol 93:145–155. https://doi.org/10.1016/j.ijbiomac.2016.08.068

    Article  CAS  PubMed  Google Scholar 

  112. Muzaffar S, Bhatti IA, Zuber M, Bhatti HN, Shahid M (2018) Synthesis and characterization of aqueous chitosan-polyurethanes dispersion for textile applications with multipurpose performance profile. Fibers Polym 19(3):587–598. https://doi.org/10.1007/s12221-018-7896-6

    Article  CAS  Google Scholar 

  113. Naz F, Zuber M, Zia Km, Salman M, Chakraborty J, Nath i, Verpoort F (2018) Synthesis and characterization of chitosan-based waterborne polyurethane for textile finishes. Carbohyd Polym 200:54–62. https://doi.org/10.1016/j.carbpol.2018.07.076

    Article  CAS  Google Scholar 

  114. Muzaffar S, Abbas M, Siddiqua UH, Arshad M, Tufail A, Ahsan M, Alissa SA, Abubshait SA, Abubshait H, AIqbal M (2021) Enhanced mechanical, UV protection and antimicrobial properties of cotton fabric employing nanochitosan and polyurethane based finishing. J Market Res 11:946–956. https://doi.org/10.1016/j.jmrt.2021.01.018

    Article  CAS  Google Scholar 

  115. Arshad N, Zia KM, Hussain MT, Zuber M, Arshad MM (2022) Synthesis of novel curcumin-based aqueous polyurethane dispersions for medical textile diligences with potential of antibacterial activities. Polym Bull 79(9):7711–7727. https://doi.org/10.1007/s00289-021-03871-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharatkumar Z. Dholakiya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 239 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghonia, J.R., Savani, N.G., Prajapati, V. et al. A review on polyurethane based multifunctional materials synthesis for advancement in textile coating applications. J Polym Res 31, 95 (2024). https://doi.org/10.1007/s10965-024-03941-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03941-5

Keywords

Navigation