Skip to main content
Log in

Tuning the properties of polycaprolactone-based fibers by using polyethylene oxide / polycaprolactone block copolymers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biocompatible polymers bearing hydrolyzable groups such as polyesters are a source of raw materials to prepare common and specific materials, due to their degradability properties under mild conditions; for instance, poly(ε-caprolactone) (PCL) is a polymer broadly used in electrospinning to produce fibrous and degradable materials. In this work, we explored the synthesis, characterization, and conditions to prepare fibrous materials made of PCL homopolymers showing different degrees of polymerization and PCL-PEO block copolymers possessing different molecular-weight, which have been synthesized by ring-opening polymerization (ROP). The obtained polymers were characterized by FT-IR, 1H-NMR, and GPC. The synthesized polymers were used to prepare fibrous materials by the electrospinning method, which were characterized by SEM, wettability, tensile test, and DSC. We found that low molecular-weight polymers cannot produce tangible materials; however, the addition of block copolymers containing the hydrophilic PEO unit produced porous materials where the fiber diameter decreased, also turning hydrophilic as the PEO chain length increased in the block copolymer. Thus, these materials can be projected towards specific applications, such as their use in tissue engineering. The role of PCL-PEO block copolymers as additives in the fabrication of PCL-based materials concerning structuration and control of fiber size, hydrophilia, and mechanical properties is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davenport Huyer L, Zhang B, Korolj A et al (2016) Highly elastic and moldable polyester biomaterial for cardiac tissue engineering applications. ACS Biomater Sci Eng 2(5):780–788. https://doi.org/10.1021/acsbiomaterials.5b00525

    Article  CAS  PubMed  Google Scholar 

  2. Dirauf M, Muljajew I, Weber C, Schubert US (2022) Recent advances in degradable synthetic polymers for biomedical applications - beyond polyesters. Prog Polym Sci 129:101547. https://doi.org/10.1016/j.progpolymsci.2022.101547

  3. Woodard LN, Grunlan MA (2018) Hydrolytic degradation and erosion of polyester biomaterials. ACS Macro Lett 7(8):976–982. https://doi.org/10.1021/acsmacrolett.8b00424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kushwaha A, Goswami L, Singhvi M, Kim BS (2023) Biodegradation of poly(ethylene terephthalate): mechanistic insights, advances, and future innovative strategies. Chem Eng J 457. https://doi.org/10.1016/j.cej.2022.141230

    Article  CAS  Google Scholar 

  5. Swetha TA, Ananthi V, Bora A et al (2023) A review on biodegradable polylactic acid (PLA) production from fermentative food waste - its applications and degradation. Int J Biol Macromol 234. https://doi.org/10.1016/j.ijbiomac.2023.123703

    Article  CAS  PubMed  Google Scholar 

  6. Olkhov AA, Mastalygina EE, Ovchinnikov VA, Kurnosov AS, Popov AA, Iordanskii AL (2023) Biological and oxidative degradation of ultrathin-fibrous Nonwovens based on poly(lactic acid)/Poly(3-Hydroxybutyrate) blends. Int J Mol Sci 24(9). https://doi.org/10.3390/ijms24097979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dwivedi R, Kumar S, Pandey R et al (2020) Polycaprolactone as biomaterial for bone scaffolds: review of literature. J oral Biol Craniofacial Res 10(1):381–388. https://doi.org/10.1016/j.jobcr.2019.10.003

    Article  Google Scholar 

  8. Kweon H, Yoo MK, Park IK et al (2003) A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 24(5):801–808. https://doi.org/10.1016/S0142-9612(02)00370-8

    Article  CAS  PubMed  Google Scholar 

  9. Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N (2018) PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed 29(7–9):863–893. https://doi.org/10.1080/09205063.2017.1394711

    Article  CAS  PubMed  Google Scholar 

  10. Fernandes MS, Kukulka EC, de Souza JR et al (2022) Development and characterization of PCL membranes incorporated with Zn-doped bioactive glass produced by electrospinning for osteogenesis evaluation. J Polym Res 29(9):370. https://doi.org/10.1007/s10965-022-03208-x

    Article  CAS  Google Scholar 

  11. Sarıipek FB, Sevgi F, Dursun S (2022) Preparation of poly(ε-caprolactone) nanofibrous mats incorporating graphene oxide-silver nanoparticle hybrid composite by electrospinning method for potential antibacterial applications. Colloids Surf Physicochem Eng Asp 653. https://doi.org/10.1016/j.colsurfa.2022.129969

    Article  CAS  Google Scholar 

  12. Limwanich W, Meepowpan P, Sriyai M, Chaiwon T, Punyodom W (2021) Eco-friendly synthesis of biodegradable poly(ε-caprolactone) using L-lactic and glycolic acids as organic initiator. Polym Bull 78(12):7089–7101. https://doi.org/10.1007/s00289-020-03401-2

    Article  CAS  Google Scholar 

  13. Park I-K, Sun H, Kim S-H et al (2019) Solvent-free bulk polymerization of lignin-polycaprolactone (PCL) copolymer and its thermoplastic characteristics. Sci Rep 9(1):7033. https://doi.org/10.1038/s41598-019-43296-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu J, Liu L (2004) Ring-opening polymerization of ε-Caprolactone initiated by natural amino acids. Macromolecules 37(8):2674–2676. https://doi.org/10.1021/ma0348066

    Article  ADS  CAS  Google Scholar 

  15. Kutikov AB, Song J (2015) Biodegradable PEG-Based amphiphilic Block copolymers for tissue Engineering Applications. ACS Biomater Sci Eng 1(7):463–480. https://doi.org/10.1021/acsbiomaterials.5b00122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rösler A, Vandermeulen GWM, Klok H-A (2012) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 64:270–279. https://doi.org/10.1016/j.addr.2012.09.026

    Article  Google Scholar 

  17. Fernández D, Guerra M, Lisoni JG et al (2019) Fibrous materials made of poly(ε-caprolactone)/Poly(ethylene oxide)-b-Poly(ε-caprolactone) blends support neural stem cells differentiation. Polym (Basel) 11(10):1621. https://doi.org/10.3390/polym11101621

  18. Huang M-H, Li S, Hutmacher DW et al (2004) Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of epsilon-caprolactone in the presence of poly(ethylene glycol). J Biomed Mater Res A 69(3):417–427. https://doi.org/10.1002/jbm.a.30008

    Article  CAS  PubMed  Google Scholar 

  19. Känkänen V, Seitsonen J, Tuovinen H et al (2020) Evaluation of the effects of nanoprecipitation process parameters on the size and morphology of poly(ethylene oxide)-block-polycaprolactone nanostructures. Int J Pharm 590. https://doi.org/10.1016/j.ijpharm.2020.119900

    Article  CAS  PubMed  Google Scholar 

  20. Parhi B, Bharatiya D, Swain SK (2022) Effect of polycaprolactone on physicochemical, biological, and mechanical properties of polyethylene oxide and polyamino acids nano block copolymers. J Appl Polym Sci 139(19). https://doi.org/10.1002/app.52116

    Article  CAS  Google Scholar 

  21. Bharatiya D, Parhi B, Swain SK (2023) Morphology biased pharmacological and mechanical properties of nanosized block copolymers of PNIPAM with polyethylene oxide and polyaminoacids in presence of polycaprolactone. J Appl Polym Sci 140(5):e53389. https://doi.org/10.1002/app.53389

  22. Nikolic L, Ristic I, Adnadjevic B, Nikolic V, Jovanovic J, Stankovic M (2010) Novel microwave-assisted synthesis of poly(D,L-lactide): the influence of Monomer/Initiator molar ratio on the product Properties. Sensors 10(5):5063–5073. https://doi.org/10.3390/s100505063

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rahmati M, Mills DK, Urbanska AM et al (2021) Electrospinning for tissue engineering applications. Prog Mater Sci 117. https://doi.org/10.1016/j.pmatsci.2020.100721

    Article  CAS  Google Scholar 

  24. Sill TJ, von Recum HA, Electrospinning (2008) Applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006. https://doi.org/10.1016/j.biomaterials.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  25. Bagherzadeh E, Sherafat Z, Zebarjad SM, Khodaei A, Amin Yavari S (2023) Stimuli-responsive piezoelectricity in electrospun polycaprolactone (PCL)/Polyvinylidene fluoride (PVDF) fibrous scaffolds for bone regeneration. J Mater Res Technol 23:379–390. https://doi.org/10.1016/j.jmrt.2023.01.007

    Article  CAS  Google Scholar 

  26. Viswanathan P, Themistou E, Ngamkham K, Reilly GC, Armes SP, Battaglia G (2015) Controlling surface topology and functionality of electrospun fibers on the nanoscale using amphiphilic block copolymers to direct mesenchymal progenitor cell adhesion. Biomacromol 16(1):66–75. https://doi.org/10.1021/bm500671j

    Article  CAS  Google Scholar 

  27. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578. https://doi.org/10.1021/ma0351975

    Article  ADS  CAS  Google Scholar 

  28. Tao J, Shivkumar S (2007) Molecular weight dependent structural regimes during the electrospinning of PVA. Mater Lett 61(11):2325–2328. https://doi.org/10.1016/j.matlet.2006.09.004

    Article  CAS  Google Scholar 

  29. Mirzaei Z, Kordestani S, Kuth S (2020) Preparation and characterization of Electrospun Blend Fibrous Polyethylene Oxide:Polycaprolactone scaffolds to promote cartilage regeneration. Adv Eng Mater 22(9). https://doi.org/10.1002/adem.202000131

    Article  CAS  Google Scholar 

  30. Kupka V, Dvořáková E, Manakhov A et al (2020) Well-blended PCL/PEO electrospun nanofibers with functional properties enhanced by plasma processing. Polym (Basel) 12(6):1403. https://doi.org/10.3390/polym12061403

  31. Li Y-F, Rubert M, Husnu A et al (2014) Ultraporous interweaving electrospun microfibers from PCL–PEO binary blends and their inflammatory responses. Nanoscale 6:3392-3402. https://doi.org/10.1039/c3nr06197c

  32. Cho SJ, Jung SM, Kang M, Shin HS, Youk JH (2015) Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell biocompatibility. Polym (Guildf) 69:95–102. https://doi.org/10.1016/j.polymer.2015.05.037

    Article  CAS  Google Scholar 

  33. Hendrick E, Frey M (2014) Increasing surface hydrophilicity in poly(lactic acid) electrospun fibers by addition of pla-b-peg co-polymers. J Eng Fiber Fabr 9(2):153-164. https://doi.org/10.1177/155892501400900219

  34. Mirhosseini MM, Haddadi-Asl V, Zargarian SS (2016) Fabrication and characterization of hydrophilic poly(ε-caprolactone)/pluronic P123 electrospun fibers. J Appl Polym Sci 133(17):43345. https://doi.org/10.1002/app.43345

  35. Vasita R, Mani G, Agrawal CM, Katti DS (2010) Surface hydrophilization of Electrospun PLGA micro-/nano-fibers by blending with Pluronic® F-108. Polym (Guildf) 51(16):3706–3714. https://doi.org/10.1016/j.polymer.2010.05.048

    Article  CAS  Google Scholar 

  36. Li W, Hu Y, Shi L et al (2018) Electrospinning of Polycaprolactone/Pluronic F127 dissolved in glacial acetic acid: fibrous scaffolds fabrication, characterization and in vitro evaluation. J Biomater Sci Polym Ed 29(10):1155–1167. https://doi.org/10.1080/09205063.2018.1439431

    Article  CAS  PubMed  Google Scholar 

  37. Bhatt AS, Bhat DK, Santosh MS (2011) Crystallinity, conductivity, and magnetic properties of PVDF-Fe3O4 composite films. J Appl Polym Sci 119(2):968–972. https://doi.org/10.1002/app.32796

    Article  CAS  Google Scholar 

  38. Díaz E, Mendivil A, León J (2022) Crystallization behavior and morphology of biodegradable poly(ε-caprolactone)/Reduced Graphene Oxide scaffolds. Biomimetics 7(3). https://doi.org/10.3390/biomimetics7030116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen X, Su Y, Li S, Ju W, Wang D (2021) Isothermal crystallization kinetics of poly(ethylene oxide)/poly(ethylene glycol)-g-silica nanocomposites. Polym (Basel) 13(4):648. https://doi.org/10.3390/polym13040648

    Article  CAS  Google Scholar 

  40. Przybysz-Romatowska M, Barczewski M, Mania S, Tercjak A, Haponiuk J, Formela K, Morphology (2021) Thermo-Mechanical properties and Biodegradibility of PCL/PLA blends reactively compatibilized by different Organic Peroxides. Mater (Basel) 14(15):4205. https://doi.org/10.3390/ma14154205

    Article  ADS  CAS  Google Scholar 

  41. Dziadek M, Dziadek K, Checinska K et al (2021) PCL and PCL/bioactive glass biomaterials as carriers for biologically active polyphenolic compounds: Comprehensive physicochemical and biological evaluation. Bioact Mater 6(6):1811–1826. https://doi.org/10.1016/j.bioactmat.2020.11.025

    Article  CAS  PubMed  Google Scholar 

  42. Báez JE, Martínez-Richa A, Marcos-Fernández A (2005) One-step Route to α-Hydroxyl-ω-(carboxylic acid) polylactones using catalysis by Decamolybdate Anion. Macromolecules 38(5):1599–1608. https://doi.org/10.1021/ma0491098

    Article  ADS  CAS  Google Scholar 

  43. Şanal T, Koçak İ, Hazer B (2017) Synthesis of comb-type amphiphilic graft copolymers derived from chlorinated poly(ɛ-caprolactone) via click reaction. Polym Bull 74(4):977–995. https://doi.org/10.1007/s00289-016-1757-5

    Article  CAS  Google Scholar 

  44. Shrivastava, A. (2018). Polymerization. In A. Shrivastava (Ed.), Introduction to Plastics Engineering (pp- 17-48). William Andrew Publishing. https://doi.org/10.1016/B978-0-323-39500-7.00002-2

  45. Monaco A, Drain B, Becer CR (2021) Detailed GPC analysis of poly(N -isopropylacrylamide) with core cross-linked star architecture. Polym Chem 12(36):5229–5238. https://doi.org/10.1039/D1PY00966D

    Article  CAS  Google Scholar 

  46. Cloutet E, Fillaut J-L, Astruc D, Gnanou Y (1998) Newly designed Star-shaped polystyrene: synthesis and characterization. Macromolecules 31(20):6748–6755. https://doi.org/10.1021/ma980587q

    Article  ADS  CAS  Google Scholar 

  47. Lazzari M, Kitayama T, Jančo M, Hatada K (2001) Synthesis of Syndiotactic Star Poly(methyl methacrylate)s with controlled number of arms. Macromolecules 34(17):5734–5736. https://doi.org/10.1021/ma0018289

    Article  ADS  CAS  Google Scholar 

  48. Lee HC, Chang T, Harville S, Mays JW (1998) Characterization of linear and star polystyrene by temperature-gradient interaction chromatography with a light-scattering detector. Macromolecules 31(3):690–694. https://doi.org/10.1021/ma9710996

    Article  ADS  CAS  Google Scholar 

  49. Izunobi JU, Higginbotham CL (2011) Polymer Molecular Weight analysis by 1H NMR spectroscopy. J Chem Educ 88(8):1098–1104. https://doi.org/10.1021/ed100461v

    Article  CAS  Google Scholar 

  50. Thaiane da Silva T, Cesar GB, Francisco CP et al (2020) Electrospun curcumin/polycaprolactone/copolymer F-108 fibers as a new therapy for wound healing. J Appl Polym Sci 137(9):48415. https://doi.org/10.1002/app.48415

  51. Hammouda B, Ho DL, Kline S (2004) Insight into clustering in poly(ethylene oxide) solutions. Macromolecules 37(18):6932–6937. https://doi.org/10.1021/ma049623d

    Article  ADS  CAS  Google Scholar 

  52. Israelachvili J (1997) The different faces of poly(ethylene glycol). Proc Natl Acad Sci 94(16):8378–8379. https://doi.org/10.1073/pnas.94.16.8378

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hezaveh S, Samanta S, Milano G, Roccatano D (2012) Molecular dynamics simulation study of solvent effects on conformation and dynamics of polyethylene oxide and polypropylene oxide chains in water and in common organic solvents. J Chem Phys 136(12). https://doi.org/10.1063/1.3694736

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Romero-Araya P, Pino V, Nenen A et al (2021) Combining materials obtained by 3D-printing and electrospinning from commercial polylactide filament to produce biocompatible composites. Polym (Basel) 13(21). https://doi.org/10.3390/polym13213806

    Article  CAS  Google Scholar 

  55. Builes DH, Hernández-Ortiz JP, Corcuera MA, Mondragon I, Tercjak A (2014) Effect of poly(ethylene oxide) homopolymer and two different poly(ethylene oxide- b -poly(propylene oxide)- b -poly(ethylene oxide) triblock copolymers on morphological, optical, and Mechanical properties of Nanostructured Unsaturated Polyester. ACS Appl Mater Interfaces 6(2):1073–1081. https://doi.org/10.1021/am4046266

    Article  CAS  PubMed  Google Scholar 

  56. Ewaldz E, Randrup J, Brettmann B (2022) Solvent effects on the elasticity of Electrospinnable Polymer Solutions. ACS Polym Au 2(2):108–117. https://doi.org/10.1021/acspolymersau.1c00041

    Article  CAS  PubMed  Google Scholar 

  57. Sarabi-Mianeji S, Scott J, Pagé DJYS (2015) Impact of electrospinning process parameters on the measured current and fiber diameter. Polym Eng Sci 55(11):2576–2582. https://doi.org/10.1002/pen.24150

    Article  CAS  Google Scholar 

  58. Faglie A, Emerine R, Chou S-F (2023) Effects of poloxamers as excipients on the physicomechanical properties, cellular biocompatibility, and in vitro drug release of electrospun polycaprolactone (PCL) fibers. Polym (Basel) 15(14). https://doi.org/10.3390/polym15142997

    Article  CAS  Google Scholar 

  59. Baker BM, Gee AO, Metter RB et al (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29(15):2348–2358. https://doi.org/10.1016/j.biomaterials.2008.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meng J, Yang G, Liu L, Song Y, Jiang L, Wang S (2017) Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity. Sci China Chem 60(5):614–620. https://doi.org/10.1007/s11426-016-9031-8

    Article  CAS  Google Scholar 

  61. Al-Azzam N, Alazzam A (2022) Micropatterning of cells via adjusting surface wettability using plasma treatment and graphene oxide deposition. Honda S, ed. PLoS One 17(6):e0269914. https://doi.org/10.1371/journal.pone.0269914

  62. Sowmya B, Panda PK (2022) Electrospinning of poly(ε-caprolactone) (PCL) and poly ethylene glycol (PEG) composite nanofiber membranes using methyl ethyl ketone (MEK) and N N’-dimethyl acetamide (DMAc) solvent mixture for anti-adhesion applications. Mater Today Commun 33:104718. https://doi.org/10.1016/j.mtcomm.2022.104718

Download references

Funding

The authors thank ANID (Grants 11181029, 1210968, 3220023, and 11230124) and Innova ConCiencia Ci2030 20CEIN2-142146 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario E. Flores.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas, V., Fernández, D., Romero-Araya, P. et al. Tuning the properties of polycaprolactone-based fibers by using polyethylene oxide / polycaprolactone block copolymers. J Polym Res 31, 60 (2024). https://doi.org/10.1007/s10965-024-03906-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03906-8

Keywords

Navigation