Skip to main content
Log in

Cross-linking network topology and durability in silicone rubber sealants for PEMFCs: the impact of curing systems and nanosilica interactions

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study investigates the durability of silicone rubber compounds employed as sealants in polyelectrolyte membrane fuel cells (PEMFCs), focusing on their cross-linking network topology. Compounds are formulated with varying curing systems, including hydrosilylation and peroxide curing, and different filler content, sizes, and surface chemistries. The findings indicate that compounds cured by hydrosilylation exhibit enhanced hardness and storage modulus, along with reduced compression set and damp factor, in comparison to those cured by peroxide. These superior mechanical properties are attributed to a homogeneous cross-linking network topology with fewer "in-elastic chains." Furthermore, strong interactions between silicone rubber and nanosilica contribute to network topology by establishing physical cross-links. Remarkably, these interactions intensify during chemical aging in a simulated PEMFC environment, resulting in increased hardness and reduced compression set. In contrast, compounds containing hydrophobic surface-modified nanosilica experience severe mechanical deterioration due to higher chain degradation during chemical aging. In summary, this study highlights the critical role of cross-linking network topology and interactions with nanosilica in determining the durability of silicone rubber compounds for PEMFC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Edwards PP, Kuznetsov VL, David WI, Brandon NP (2008) Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 36:4356–4362. https://doi.org/10.1016/j.enpol.2008.09.036

    Article  Google Scholar 

  2. Habibnia M, Shakeri M, Nourouzi S (2016) Determination of the effective parameters on the fuel cell efficiency, based on sealing behavior of the system. Int J Hydrogen Energy 41:18147–18156. https://doi.org/10.1016/j.ijhydene.2016.06.258

    Article  CAS  Google Scholar 

  3. Meidanshahi V, Karimi G (2012) Dynamic modeling, optimization and control of power density in a PEM fuel cell. Appl Energy 93:98–105. https://doi.org/10.1016/j.apenergy.2011.04.048

    Article  ADS  Google Scholar 

  4. Basuli U, Jose J, Lee RH, Yoo YH, Jeong KU, Ahn JH, Nah C (2012) Properties and degradation of the gasket component of a proton exchange membrane fuel cell—A review. J Nanosci Nanotechnol 12:7641–7657. https://doi.org/10.1166/jnn.2012.6627

    Article  CAS  PubMed  Google Scholar 

  5. Kim MS, Kim JH, Kim JK, Kim SJ (2007) Life time prediction of rubber gasket for fuel cell through its acid-aging characteristics. Macromol Res 15:315–323. https://doi.org/10.1007/bf03218793

    Article  CAS  Google Scholar 

  6. Nah C, Kim SG, Shibulal GS, Yoo YH, Mensah B, Jeong BH, Ahn JH (2015) Effects of curing systems on the mechanical and chemical ageing resistance properties of gasket compounds based on ethylene-propylene-diene-termonomer rubber in a simulated fuel cell environment. Int J Hydrogen Energy 40:10627–10635. https://doi.org/10.1016/j.ijhydene.2015.07.003

    Article  CAS  Google Scholar 

  7. Qiu D, Liang P, Peng L, Yi P, Lai X, Ni J (2020) Material behavior of rubber sealing for proton exchange membrane fuel cells. Int J Hydrogen Energy 45:5465–5473. https://doi.org/10.1016/j.ijhydene.2019.07.232

    Article  CAS  Google Scholar 

  8. Tan J, Chao YJ, Yang M, Lee WK, Van Zee JW (2011) Chemical and mechanical stability of a Silicone gasket material exposed to PEM fuel cell environment. Int J Hydrogen Energy 36:1846–1852. https://doi.org/10.1016/j.ijhydene.2009.12.048

    Article  CAS  Google Scholar 

  9. Moretto HH, Schulze M, Wagner G (2000). Silicones Ullmann’s encyclopedia of industrial chemistry. https://doi.org/10.1002/14356007.a24_057

    Article  Google Scholar 

  10. Schulze M, Knöri T, Schneider A, Gülzow E (2004) Degradation of sealings for PEFC test cells during fuel cell operation. J Power Sources 127:222–229. https://doi.org/10.1016/j.jpowsour.2003.09.017

    Article  CAS  Google Scholar 

  11. Tan J, Chao YJ, Van Zee JW, Lee WK (2007) Degradation of elastomeric gasket materials in PEM fuel cells. Mater Sci Eng 445:669–675. https://doi.org/10.1016/j.msea.2006.09.098

    Article  CAS  Google Scholar 

  12. Tan J, Chao YJ, Li X, Van Zee JW (2007) Degradation of silicone rubber under compression in a simulated PEM fuel cell environment. J Power Sources 172:782–789. https://doi.org/10.1016/j.jpowsour.2007.05.026

    Article  CAS  Google Scholar 

  13. Lin CW, Chien CH, Tan J, Chao YJ, Van Zee JW (2011) Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment. J Power Sources 196:1955–1966. https://doi.org/10.1016/j.jpowsour.2010.10.012

    Article  CAS  Google Scholar 

  14. Cui T, Lin CW, Chien CH, Chao YJ, Van Zee JW (2011) Service life estimation of liquid silicone rubber seals in polymer electrolyte membrane fuel cell environment. J Power Sources 196:1216–1221. https://doi.org/10.1016/j.jpowsour.2010.08.075

    Article  CAS  Google Scholar 

  15. Lin CW, Chien CH, Tan J, Chao YJ, Van Zee JW (2011) Dynamic mechanical characteristics of five elastomeric gasket materials aged in a simulated and an accelerated PEM fuel cell environment. Int J Hydrogen Energy 36:6756–6767. https://doi.org/10.1016/j.ijhydene.2011.02.112

    Article  CAS  Google Scholar 

  16. Li G, Tan J, Gong J (2012) Degradation of the elastomeric gasket material in a simulated and four accelerated proton exchange membrane fuel cell environments. J Power Sources 205:244–251. https://doi.org/10.1016/j.jpowsour.2011.06.092

    Article  CAS  Google Scholar 

  17. Wu F, Chen B, Pan M (2020) Degradation of the sealing silicone rubbers in a proton exchange membrane fuel cell at cold start conditions. Int J Electrochem Sci 15:3013–3028. https://doi.org/10.20964/2020.04.54

    Article  CAS  Google Scholar 

  18. Pehlivan-Davis S, Clarke J, Armour S (2013) Comparison of accelerated aging of silicone rubber gasket material with aging in a fuel cell environment. J Appl Polym Sci 129:1446–1454. https://doi.org/10.1002/app.38837

    Article  CAS  Google Scholar 

  19. Delebecq E, Ganachaud F (2012) Looking over liquid silicone rubbers:(1) network topology vs chemical formulations. ACS Appl Mater Inter 4:3340–3352. https://doi.org/10.1021/am300502r

    Article  CAS  Google Scholar 

  20. Delebecq E, Hermeline N, Flers A, Ganachaud F (2012) Looking over liquid silicone rubbers:(2) mechanical properties vs network topology. ACS Appl Mater Inter 4:3353–3363. https://doi.org/10.1021/am300503j

    Article  CAS  Google Scholar 

  21. Deriabin KV, Lobanovskaia EK, Novikov AS, Islamova RM (2019) Platinum-catalyzed reactions between Si–H groups as a new method for cross-linking of silicones. Org Biomol Chem 17:5545–5549. https://doi.org/10.1039/c9ob00791a

    Article  CAS  PubMed  Google Scholar 

  22. Flory PJ, Rehner J Jr (1943) Statistical mechanics of cross-linked polymer networks II. Swelling J Chem Phys 11:521–526

    Article  ADS  CAS  Google Scholar 

  23. Hou Q, Yin L, Xu L, Tan J (2022) Effects of composite reinforcing filler, vulcanizing temperature, and pressure on mechanical properties of gasket material for proton exchange membrane fuel cells. J Appl Polym Sci 139:52298. https://doi.org/10.1002/app.52298

    Article  CAS  Google Scholar 

  24. Wu T, Huang M, Liu X, Feng H, Shao M, Cai H (2022) Characterization method for the swelling effect of an insulating washing agent on silicone rubber in power systems. ACS Omega 7:42331–42338. https://doi.org/10.1021/acsomega.2c05367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rajesh G, Maji PK, Bhattacharya M, Choudhury A, Roy N, Saxena A, Bhowmick AK (2010) Liquid silicone rubber Vulcanizates: network structure-property relationship and cure kinetics. Polym Polym Compos 18:477–488. https://doi.org/10.1177/096739111001800902

    Article  CAS  Google Scholar 

  26. Burnside SD, Giannelis EP (2000) Nanostructure and properties of polysiloxane-layered silicate nanocomposites. J Polym Sci B Polym Phys 38:1595–1604. https://doi.org/10.1002/(sici)1099-0488(20000615)38:12%3c1595::aid-polb40%3e3.0.co;2-u

    Article  ADS  CAS  Google Scholar 

  27. Kole S, Bhattacharya A, Tripathy DK, Bhowmick AK (1993) Influence of curative, filler, compatibilizer, domain size, and blend ratio on the dynamic mechanical properties of silicone–EPDM blends. J Appl Polym Sci 48:529–545. https://doi.org/10.1002/app.1993.070480317

    Article  CAS  Google Scholar 

  28. Ogungbemi E, Wilberforce T, Ijaodola O, Thompson J, Olabi AG (2021) Review of operating condition, design parameters and material properties for proton exchange membrane fuel cells. Int J Energy Res 45:1227–1245. https://doi.org/10.1002/er.5810

    Article  CAS  Google Scholar 

  29. Urayama K, Kawamura T, Kohjiya S (2009) Structure–mechanical property correlations of model siloxane elastomers with controlled network topology. Polymer 50:347–356. https://doi.org/10.1016/j.polymer.2008.10.027

    Article  CAS  Google Scholar 

  30. Bokobza L (2004) The reinforcement of elastomeric networks by fillers. Macromol Chem Phys 289:607–621. https://doi.org/10.1002/mame.200400034

    Article  CAS  Google Scholar 

  31. Hanson DE (2004) An explicit polymer and node network model to compute micromechanical properties of silica-filled polydimethylsiloxane. Polymer 45:1055–1062. https://doi.org/10.1016/j.polymer.2003.11.028

    Article  CAS  Google Scholar 

  32. Yuan QW, Mark JE (1999) Reinforcement of poly (dimethylsiloxane) networks by blended and in-situgenerated silica fillers having various sizes, size distributions, and modified surfaces. Macromol Chem Phys 200:206–220. https://doi.org/10.1002/(sici)1521-3935(19990101)200:1%3c206::aid-macp206%3e3.0.co;2-s

    Article  CAS  Google Scholar 

  33. Lupton EM, Achenbach F, Weis J, Bräuchle C, Frank I (2009) Origins of material failure in siloxane elastomers from first principles. ChemPhysChem 10:119–123. https://doi.org/10.1002/cphc.200800094

    Article  CAS  PubMed  Google Scholar 

  34. Bhowmick AK, Gent AN, Pulford CTR (1983) Tear strength of elastomers under threshold conditions. Rubber Chem Tech 56:226–232. https://doi.org/10.5254/1.3538115

    Article  CAS  Google Scholar 

  35. Simon MW, Stafford KT, Ou DL (2008) Nanoclay reinforcement of liquid silicone rubber. J Inorg Organomet Polym Mater 18:364–373. https://doi.org/10.1007/s10904-008-9207-y

    Article  CAS  Google Scholar 

  36. Fitzgerald JJ, Osaheni AJ, Stanlee Buddle T, Donald Pero T (1997) Heat Cured Rubbers. US Patents No. 5623028

Download references

Acknowledgements

This material is based upon work supported by the Ferdowsi University of Mashhad under Grant No. 54573.

Funding

Ferdowsi University of Mashhad, 54573, Hamed Janani

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MN, and HJ. The first draft of the manuscript was written by MN and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hamed Janani.

Ethics declarations

Ethical approval

Not applicable.

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10965_2024_3898_MOESM1_ESM.docx

Supplementary file1 TGA of component A and B of the silicone rubber; Tensile stress–strain curves of silicone rubber compounds filled with nanosilica and micorsilicate; FTIR spectra of original and surface modified nanosilica; Change of stress–strain behavior due to chemical treatment for samples containing original nano-silica, and modified nano-silica (DOCX 5024 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norouznezhad, M., Janani, H. Cross-linking network topology and durability in silicone rubber sealants for PEMFCs: the impact of curing systems and nanosilica interactions. J Polym Res 31, 59 (2024). https://doi.org/10.1007/s10965-024-03898-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03898-5

Keywords

Navigation