Skip to main content
Log in

Volatile and non-volatile additives for Polymer Solar cells from Fullerene to non-fullerene systems

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In recent years, the progress of polymer solar cells (PSCs) has been greatly improved, with power conversion efficiencies (PCEs) exceeding 19%. In addition to major breakthroughs in the development of p-type and n-type materials, device engineering related to active layer morphology control plays a key role in improving efficiency. External treatments such as additives, thermal/solvent annealing, and interlayer modification are widely used to manipulate donor-acceptor bulk heterojunction (BHJ) layers. Volatile and non-volatile additives are considered to be a simple, efficient and effective method to control the morphology of active layers during spin-coating film-forming process. This review will summarize common and successful additives for fullerene and non-fullerene based PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reprinted with permission from [16]. Copyright 2021 American Chemical Society

Fig. 4
Fig. 5

Reprinted with permission from [19]. Copyright 2017 American Chemical Society

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data availability is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5(1):5293. https://doi.org/10.1038/ncomms6293

    Article  CAS  PubMed  Google Scholar 

  2. Ma W, Yang G, Jiang K, Carpenter JH, Wu Y, Meng X, McAfee T, Zhao J, Zhu C, Wang C, Ade H, Yan H (2015) Organic solar cells: influence of processing parameters and molecular weight on the morphology and properties of high-performance PffBT4T-2OD:PC71BM organic solar cells. Adv Energy Mater 5(23):1501400. https://doi.org/10.1002/aenm.201570126

    Article  Google Scholar 

  3. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1(2):15027. https://doi.org/10.1038/nenergy.2015.27

    Article  CAS  Google Scholar 

  4. Guo X, Cui C, Zhang M, Huo L, Huang Y, Hou J, Li Y (2012) High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy Environ Sci 5(7):7943–7949. https://doi.org/10.1039/c2ee21481d

    Article  CAS  Google Scholar 

  5. Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ (2008) Processing additives for improved efficiency from bulk heterojunction solar cells. J Am Chem Soc 130(11):3619–3623. https://doi.org/10.1021/ja710079w

    Article  CAS  PubMed  Google Scholar 

  6. Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923. https://doi.org/10.1021/cr900182s

    Article  CAS  PubMed  Google Scholar 

  7. Zhao J, Zhao S, Xu Z, Qiao B, Huang D, Zhao L, Li Y, Zhu Y, Wang P (2016) Revealing the effect of additives with different solubility on the morphology and the donor crystalline structures of organic solar cells. ACS Appl Mater Interfaces 8(28):18231–18237. https://doi.org/10.1021/acsami.6b02671

    Article  CAS  PubMed  Google Scholar 

  8. Li G, Shrotriya V, Yao Y, Huang J, Yang Y (2007) Manipulating regioregular poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester blends—route towards high efficiency polymer solar cells. J Mater Chem 17(30):3126–3140. https://doi.org/10.1039/b703075b

    Article  CAS  Google Scholar 

  9. Choi H, Ko SJ, Kim T, Morin PO, Walker B, Lee BH, Leclerc M, Kim JY, Heeger AJ (2015) Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor. Adv Mater 27(21):3318–3324. https://doi.org/10.1002/adma.201501132

    Article  CAS  PubMed  Google Scholar 

  10. Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22(20):E135–E138. https://doi.org/10.1002/adma.200903528

    Article  CAS  PubMed  Google Scholar 

  11. Jhuo H-J, Liao S-H, Li Y-L, Yeh P-N, Chen S-A, Wu W-R, Su C-J, Lee J-J, Yamada NL, Jeng US (2016) The novel additive 1-naphthalenethiol opens a new processing route to efficiency-enhanced polymer solar cells. Adv Funct Mater 26(18):3094–3104. https://doi.org/10.1002/adfm.201505249

    Article  CAS  Google Scholar 

  12. Liao SH, Jhuo HJ, Cheng YS, Chen SA (2013) Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater 25(34):4766–4771. https://doi.org/10.1002/adma.201301476

    Article  CAS  PubMed  Google Scholar 

  13. Wan Q, Guo X, Wang Z, Li W, Guo B, Ma W, Zhang M, Li Y (2016) 10.8% efficiency polymer solar cells based on PTB7-Th and PC71BM via binary solvent additives treatment. Adv Funct Mater 26(36):6635–6640. https://doi.org/10.1002/adfm.201602181

    Article  CAS  Google Scholar 

  14. Chen J, Zhang L, Jiang X, Gao K, Liu F, Gong X, Chen J, Cao Y (2017) Usingo-Chlorobenzaldehyde as a fast removable solvent additive during spin-coating PTB7-based active layers: high efficiency thick-film polymer solar cells. Adv Energy Mater 7(3):1601344. https://doi.org/10.1002/aenm.201601344

    Article  CAS  Google Scholar 

  15. Li Y, Xu Z, Zhao S, Huang D, Zhao L, Zhang C, Zhao J, Wang P, Zhu Y (2016) Enhanced carrier dynamics of PTB7:PC 71 BM based bulk heterojunction organic solar cells by the incorporation of formic acid. Org Electron 28:275–280. https://doi.org/10.1016/j.orgel.2015.11.004

    Article  CAS  Google Scholar 

  16. Liu X, Ma R, Wang Y, Du S, Tong J, Shi X, Li J, Bao X, Xia Y, Liu T, Yan H (2021) Significantly boosting efficiency of Polymer Solar cells by employing a nontoxic halogen-free additive. ACS Appl Mater Interfaces 13(9):11117–11124. https://doi.org/10.1021/acsami.0c22014

    Article  CAS  PubMed  Google Scholar 

  17. Liao M-H, Tsai C-E, Lai Y-Y, Cao F-Y, Wu J-S, Wang C-L, Hsu C-S, Liau I, Cheng Y-J (2014) Morphological stabilization by supramolecular perfluorophenyl-c60interactions leading to efficient and thermally stable organic photovoltaics. Adv Funct Mater 24(10):1418–1429. https://doi.org/10.1002/adfm.201300437

    Article  CAS  Google Scholar 

  18. Wu J-S, Lai Y-Y, Cheng Y-J, Chang C-Y, Wang C-L, Hsu C-S (2013) A new sp2-sp2 dialkylethylene-bridged heptacyclic ladder-type arene for high efficiency polymer solar cells. Adv Energy Mater 3(4):457–465. https://doi.org/10.1002/aenm.201200929

    Article  CAS  Google Scholar 

  19. Hung K-E, Tsai C-E, Chang S-L, Lai Y-Y, Jeng US, Cao F-Y, Hsu C-S, Su C-J, Cheng Y-J (2017) Bispentafluorophenyl-containing additive: enhancing efficiency and morphological stability of polymer solar cells via hand-grabbing-like supramolecular pentafluorophenyl–fullerene interactions. ACS Appl Mater Interfaces 9(50):43861–43870. https://doi.org/10.1021/acsami.7b13426

    Article  CAS  PubMed  Google Scholar 

  20. Cheng P, Yan C, Lau TK, Mai J, Lu X, Zhan X (2016) Molecular lock: a versatile key to enhance efficiency and stability of organic solar cells. Adv Mater 28(28):5822–5829. https://doi.org/10.1002/adma.201600426

    Article  CAS  PubMed  Google Scholar 

  21. Guo Q, Guo Q, Geng Y, Tang A, Zhang M, Du M, Sun X, Zhou E (2021) Recent advances in PM6:Y6-based organic solar cells. Mater Chem Front 5(8):3257–3280. https://doi.org/10.1039/d1qm00060h

    Article  CAS  Google Scholar 

  22. Gurney RS, Lidzey DG, Wang T (2019) A review of non-fullerene polymer solar cells: from device physics to morphology control. Rep Prog Phys 82(3):036601. https://doi.org/10.1088/1361-6633/ab0530

    Article  CAS  PubMed  Google Scholar 

  23. Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, Baran D, McCulloch I (2019) Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem Soc Rev 48(6):1596–1625. https://doi.org/10.1039/c7cs00892a

    Article  CAS  PubMed  Google Scholar 

  24. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X (2018) Non-fullerene acceptors for organic solar cells. Nat Rev Mater 3(3):18003. https://doi.org/10.1038/natrevmats.2018.3

    Article  CAS  Google Scholar 

  25. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L (2020) 18% efficiency organic solar cells. Sci Bull 65(4):272–275. https://doi.org/10.1016/j.scib.2020.01.001

    Article  CAS  Google Scholar 

  26. Li Y, Cai Y, Xie Y, Song J, Wu H, Tang Z, Zhang J, Huang F, Sun Y (2021) A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells. Energy Environ Sci 14(9):5009–5016. https://doi.org/10.1039/d1ee01864g

    Article  CAS  Google Scholar 

  27. Zhang T, An C, Bi P, Lv Q, Qin J, Hong L, Cui Y, Zhang S, Hou J (2021) A thiadiazole-based conjugated polymer with Ultradeep HOMO Level and strong Electroluminescence enables 18.6% efficiency in Organic Solar Cell. Adv Energy Mater 11(35):2101705. https://doi.org/10.1002/aenm.202101705

    Article  CAS  Google Scholar 

  28. Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J (2021) Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater 2102420. https://doi.org/10.1002/adma.202102420

  29. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868. https://doi.org/10.1038/nmat1500

    Article  CAS  Google Scholar 

  30. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with Nanoscale Control of the Interpenetrating Network morphology. Adv Funct Mater 15(10):1617–1622. https://doi.org/10.1002/adfm.200500211

    Article  CAS  Google Scholar 

  31. Park JH, Kim JS, Lee JH, Lee WH, Cho K (2009) Effect of Annealing Solvent solubility on the performance of poly(3-hexylthiophene)/Methanofullerene solar cells. J Phys Chem C 113(40):17579–17584. https://doi.org/10.1021/jp9029562

    Article  CAS  Google Scholar 

  32. Guo X, Zhang M, Ma W, Zhang S, Hou J, Li Y (2016) Effect of solvent additive on active layer morphologies and photovoltaic performance of polymer solar cells based on PBDTTT-C-T/PC71BM. RSC Adv 6(57):51924–51931. https://doi.org/10.1039/c6ra06020j

    Article  CAS  Google Scholar 

  33. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6(7):497–500. https://doi.org/10.1038/nmat1928

    Article  CAS  PubMed  Google Scholar 

  34. Zhang M, Guo X, Ma W, Ade H, Hou J (2014) A polythiophene derivative with superior properties for practical application in polymer solar cells. Adv Mater 26(33):5880–5885. https://doi.org/10.1002/adma.201401494

    Article  CAS  PubMed  Google Scholar 

  35. Yao Y, Hou J, Xu Z, Li G, Yang Y (2008) Effects of Solvent Mixtures on the Nanoscale phase separation in Polymer Solar cells. Adv Funct Mater 18(12):1783–1789. https://doi.org/10.1002/adfm.200701459

    Article  CAS  Google Scholar 

  36. Choi H, Lee J, Oh C-M, Jang S, Kim H, Jeong MS, Park SH, Hwang I-W (2019) Efficiency enhancements in non-fullerene acceptor-based organic solar cells by post-additive soaking. J Mater Chem A 7(15):8805–8810. https://doi.org/10.1039/c9ta00468h

    Article  CAS  Google Scholar 

  37. Hwang I-W, Kong J, Yoo HK, Lee K (2015) Improved Carrier Dynamics and High Solar Cell performance in postadditive-soaked PTB7:PC71BM bulk heterojunction materials. J Phys Chem C 119(23):12896–12903. https://doi.org/10.1021/acs.jpcc.5b03751

    Article  CAS  Google Scholar 

  38. Kong J, Hwang IW, Lee K (2014) Top-down approach for nanophase reconstruction in bulk heterojunction solar cells. Adv Mater 26(36):6275–6283. https://doi.org/10.1002/adma.201402182

    Article  CAS  PubMed  Google Scholar 

  39. Liu F, Zhou L, Liu W, Zhou Z, Yue Q, Zheng W, Sun R, Liu W, Xu S, Fan H et al (2021) Organic Solar cells with 18% efficiency enabled by an Alloy Acceptor: a two-in-one strategy. Adv Mater 33(27):e2100830. https://doi.org/10.1002/adma.202100830

    Article  CAS  PubMed  Google Scholar 

  40. Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K (2019) Eco-Compatible Solvent-Processed Organic Photovoltaic cells with over 16% efficiency. Adv Mater 31(39):e1903441. https://doi.org/10.1002/adma.201903441

    Article  CAS  PubMed  Google Scholar 

  41. McDowell C, Abdelsamie M, Toney MF, Bazan GC (2018) Solvent additives: key morphology-directing agents for solution-processed Organic Solar cells. Adv Mater 30:1707114. https://doi.org/10.1002/adma.201707114

    Article  CAS  Google Scholar 

  42. Lou SJ, Szarko JM, Xu T, Yu L, Marks TJ, Chen LX (2011) Effects of additives on the morphology of Solution Phase Aggregates formed by active Layer Components of High-Efficiency Organic Solar cells. J Am Chem Soc 133(51):20661–20663. https://doi.org/10.1021/ja2085564

    Article  CAS  PubMed  Google Scholar 

  43. Chiu M-Y, Jeng US, Su C-H, Liang KS, Wei K-H (2008) Simultaneous use of small- and Wide-Angle X-ray techniques to analyze Nanometerscale phase separation in Polymer Heterojunction Solar cells. Adv Mater 20(13):2573–2578. https://doi.org/10.1002/adma.200703097

    Article  CAS  Google Scholar 

  44. Lee TH, Park SY, Walker B, Ko S-J, Heo J, Woo HY, Choi H, Kim JY (2017) A universal processing additive for high-performance polymer solar cells. RSC Adv 7(13):7476–7482. https://doi.org/10.1039/c6ra27944a

    Article  CAS  Google Scholar 

  45. Yu R, Yao H, Hong L, Qin Y, Zhu J, Cui Y, Li S, Hou J (2018) Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nat Commun 9(1):4645. https://doi.org/10.1038/s41467-018-07017-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu R, Yao H, Chen Z, Xin J, Hong L, Xu Y, Zu Y, Ma W, Hou J (2019) Enhanced pi-pi interactions of Nonfullerene acceptors by Volatilizable Solid Additives in efficient polymer solar cells. Adv Mater 31(18):1900477. https://doi.org/10.1002/adma.201900477

    Article  CAS  Google Scholar 

  47. Fu J, Chen H, Huang P, Yu Q, Tang H, Chen S, Jung S, Sun K, Yang C, Lu S, Kan Z, Xiao Z, Li G (2021) Eutectic phase behavior induced by a simple additive contributes to efficient organic solar cells. Nano Energy 84:105862. https://doi.org/10.1016/j.nanoen.2021.105862

    Article  CAS  Google Scholar 

  48. Cai J, Wang H, Zhang X, Li W, Li D, Mao Y, Du B, Chen M, Zhuang Y, Liu D, Qin H-L, Zhao Y, Smith JA, Kilbride RC, Parnell AJ, Jones RAL, Lidzey DG, Wang T (2020) Fluorinated solid additives enable high efficiency non-fullerene organic solar cells. J Mater Chem A 8(8):4230–4238. https://doi.org/10.1039/c9ta13974e

    Article  CAS  Google Scholar 

  49. Fu J, Chen S, Yang K, Jung S, Lv J, Lan L, Chen H, Hu D, Yang Q, Duan T, Kan Z, Yang C, Sun K, Lu S, Xiao Z, Li Y (2020) A “sigma-Hole”-containing volatile solid additive enabling 16.5% efficiency organic solar cells. iScience 23(3):100965. https://doi.org/10.1016/j.isci.2020.100965

  50. Zhang Y, Cho Y, Lee J, Oh J, Kang S-H, Lee SM, Lee B, Zhong L, Huang B, Lee S, Lee J-W, Kim BJ, Li Y, Yang C (2020) Volatilizable and cost-effective quinone-based solid additives for improving photovoltaic performance and morphological stability in non-fullerene polymer solar cells. J Mater Chem A 8(26):13049–13058. https://doi.org/10.1039/d0ta04941g

    Article  CAS  Google Scholar 

  51. Liu L, Kan Y, Gao K, Wang J, Zhao M, Chen H, Zhao C, Jiu T, Jen A-K-Y, Li Y (2020) Graphdiyne Derivative as Multifunctional Solid Additive in Binary Organic Solar cells with 17.3% efficiency and high reproductivity. Adv Mater 32(11):1907604. https://doi.org/10.1002/adma.201907604

    Article  CAS  Google Scholar 

  52. Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv Mater 23(31):3597–3602. https://doi.org/10.1002/adma.201100792

    Article  CAS  PubMed  Google Scholar 

  53. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha C-S, Ree M (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat Mater 5(3):197–203. https://doi.org/10.1038/nmat1574

    Article  CAS  Google Scholar 

  54. Hou J, Inganäs O, Friend RH, Gao F (2018) Organic solar cells based on non-fullerene acceptors. Nat Mater 17(2):119–128. https://doi.org/10.1038/nmat5063

    Article  CAS  PubMed  Google Scholar 

  55. Karki A, Vollbrecht J, Dixon AL, Schopp N, Schrock M, Reddy GNM, Nguyen TQ (2019) Understanding the high performance of over 15% efficiency in Single-Junction Bulk Heterojunction Organic Solar cells. Adv Mater 31(48):1903868. https://doi.org/10.1002/adma.201903868

    Article  CAS  Google Scholar 

  56. Kawashima K, Tamai Y, Ohkita H, Osaka I, Takimiya K (2015) High-efficiency polymer solar cells with small photon energy loss. Nat Commun 6:10085. https://doi.org/10.1038/ncomms10085

    Article  CAS  PubMed  Google Scholar 

  57. Menke SM, Ran NA, Bazan GC, Friend RH (2018) Understanding Energy loss in Organic Solar cells: toward a New Efficiency Regime. Joule 2(1):25–35. https://doi.org/10.1016/j.joule.2017.09.020

    Article  CAS  Google Scholar 

  58. Perdigon-Toro L, Zhang H, Markina A, Yuan J, Hosseini SM, Wolff CM, Zuo G, Stolterfoht M, Zou Y, Gao F, Andrienko D, Shoaee S, Neher D (2020) Barrierless Free Charge Generation in the high-performance PM6:Y6 bulk Heterojunction Non-Fullerene Solar Cell. Adv Mater 32(9):1906763. https://doi.org/10.1002/adma.201906763

    Article  CAS  Google Scholar 

  59. Qian D, Zheng Z, Yao H, Tress W, Hopper TR, Chen S, Li S, Liu J, Chen S, Zhang J, Liu XK, Gao B, Ouyang L, Jin Y, Pozina G, Buyanova IA, Chen WM, Inganas O, Coropceanu V, Bredas JL, Yan H, Hou J, Zhang F, Bakulin AA, Gao F (2018) Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat Mater 17(8):703–709. https://doi.org/10.1038/s41563-018-0128-z

    Article  CAS  PubMed  Google Scholar 

  60. Sun C, Qin S, Wang R, Chen S, Pan F, Qiu B, Shang Z, Meng L, Zhang C, Xiao M, Yang C, Li Y (2020) High efficiency polymer solar cells with efficient hole transfer at zero highest occupied molecular orbital offset between methylated polymer donor and brominated acceptor. J Am Chem Soc 142(3):1465–1474. https://doi.org/10.1021/jacs.9b09939

    Article  CAS  PubMed  Google Scholar 

  61. Vandewal K, Benduhn J, Nikolis VC (2018) How to determine optical gaps and voltage losses in organic photovoltaic materials. Sustain Energy Fuels 2(3):538–544. https://doi.org/10.1039/c7se00601b

    Article  CAS  Google Scholar 

  62. Wu J, Lee J, Chin Y-C, Yao H, Cha H, Luke J, Hou J, Kim J-S, Durrant JR (2020) Exceptionally low charge trapping enables highly efficient organic bulk heterojunction solar cells. Energy Environ Sci 13(8):2422–2430. https://doi.org/10.1039/d0ee01338b

    Article  CAS  Google Scholar 

  63. Yao H, Cui Y, Qian D, Ponseca CS Jr, Honarfar A, Xu Y, Xin J, Chen Z, Hong L, Gao B, Yu R, Zu Y, Ma W, Chabera P, Pullerits T, Yartsev A, Gao F, Hou J (2019) 14.7% efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference. J Am Chem Soc 141(19):7743–7750. https://doi.org/10.1021/jacs.8b12937

    Article  CAS  PubMed  Google Scholar 

  64. Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL, Chang SY, Zhang Z, Huang W, Wang R, Meng D, Gao F, Yang Y (2019) Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat Commun 10(1):570. https://doi.org/10.1038/s41467-019-08386-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zuo L, Shi X, Jo SB, Liu Y, Lin F, Jen AK (2018) Tackling energy loss for high-efficiency organic solar cells with integrated multiple strategies. Adv Mater 30(16):1706816. https://doi.org/10.1002/adma.201706816

    Article  CAS  Google Scholar 

  66. Zheng Z, Yao H, Ye L, Xu Y, Zhang S, Hou J (2020) PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater Today 35:115–130. https://doi.org/10.1016/j.mattod.2019.10.023

    Article  CAS  Google Scholar 

  67. Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H (2020) Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci China Chem 63(3):325–330. https://doi.org/10.1007/s11426-019-9669-3

    Article  CAS  Google Scholar 

  68. Zhao W, Qian D, Zhang S, Li S, Inganas O, Gao F, Hou J (2016) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28(23):4734–4739. https://doi.org/10.1002/adma.201600281

    Article  CAS  PubMed  Google Scholar 

  69. Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang ZG, Li Y (2018) A low cost and high performance polymer donor material for polymer solar cells. Nat Commun 9(1):743. https://doi.org/10.1038/s41467-018-03207-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular optimization enables over 13% efficiency in Organic Solar cells. J Am Chem Soc 139(21):7148–7151. https://doi.org/10.1021/jacs.7b02677

    Article  CAS  PubMed  Google Scholar 

  71. Yuan J, Zhang Y, Zhou L, Zhang G, Yip H-L, Lau T-K, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y (2019) Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3(4):1140–1151. https://doi.org/10.1016/j.joule.2019.01.004

    Article  CAS  Google Scholar 

  72. Zhang D, Li Q, Zhang J, Wang J, Zhang X, Wang R, Zhou J, Wei Z, Zhang C, Zhou H, Zhang Y (2020) Control of nanomorphology in fullerene-free organic solar cells by lewis acid doping with enhanced photovoltaic efficiency. ACS Appl Mater Interfaces 12(1):667–677. https://doi.org/10.1021/acsami.9b17238

    Article  CAS  PubMed  Google Scholar 

  73. Xiong Y, Ye L, Gadisa A, Zhang Q, Rech JJ, You W, Ade H (2018) Revealing the impact of F4-TCNQ as additive on morphology and performance of high‐efficiency nonfullerene organic solar cells. Adv Funct Mater 29(1):1806262. https://doi.org/10.1002/adfm.201806262

    Article  CAS  Google Scholar 

  74. Yu R, Yao H, Hong L, Gao M, Ye L, Hou J (2020) TCNQ as a volatilizable morphology modulator enables enhanced performance in non-fullerene organic solar cells. J Mater Chem C 8(1):44–49. https://doi.org/10.1039/c9tc04892h

    Article  CAS  Google Scholar 

  75. Bi P, Zhang S, Chen Z, Xu Y, Cui Y, Zhang T, Ren J, Qin J, Hong L, Hao X, Hou J (2021) Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 5:2408–2419. https://doi.org/10.1016/j.joule.2021.06.020

    Article  CAS  Google Scholar 

  76. Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y (2021) Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat Energy 6(6):605–613. https://doi.org/10.1038/s41560-021-00820-x

    Article  CAS  Google Scholar 

  77. Li S, Li C-Z, Shi M, Chen H (2020) New Phase for Organic Solar Cell Research: emergence of Y-Series Electron Acceptors and their perspectives. ACS Energy Lett 5(5):1554–1567. https://doi.org/10.1021/acsenergylett.0c00537

    Article  CAS  Google Scholar 

  78. Li S, Zhan L, Yao N, Xia X, Chen Z, Yang W, He C, Zuo L, Shi M, Zhu H, Lu X, Zhang F, Chen H (2021) Unveiling structure-performance relationships from multi-scales in non-fullerene organic photovoltaics. Nat Commun 12(1):4627. https://doi.org/10.1038/s41467-021-24937-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ma X, Zeng A, Gao J, Hu Z, Xu C, Son JH, Jeong SY, Zhang C, Li M, Wang K, Yan H, Ma Z, Wang Y, Woo HY, Zhang F (2021) Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6: Y6-1O as acceptor. Natl Sci Rev 8(8):nwaa305. https://doi.org/10.1093/nsr/nwaa305

    Article  PubMed  Google Scholar 

  80. Qi F, Jiang K, Lin F, Wu Z, Zhang H, Gao W, Li Y, Cai Z, Woo HY, Zhu Z, Jen AKY (2020) Over 17% efficiency Binary Organic Solar cells with Photoresponses reaching 1000 nm enabled by selenophene-fused nonfullerene acceptors. ACS Energy Lett 6(1):9–15. https://doi.org/10.1021/acsenergylett.0c02230

    Article  CAS  Google Scholar 

  81. Zhan L, Li S, Lau T-K, Cui Y, Lu X, Shi M, Li C-Z, Li H, Hou J, Chen H (2020) Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ Sci 13(2):635–645. https://doi.org/10.1039/c9ee03710a

    Article  CAS  Google Scholar 

  82. Ye L, Cai Y, Li C, Zhu L, Xu J, Weng K, Zhang K, Huang M, Zeng M, Li T, Zhou E, Tan S, Hao X, Yi Y, Liu F, Wang Z, Zhan X, Sun Y (2020) Ferrocene as a highly volatile solid additive in non-fullerene organic solar cells with enhanced photovoltaic performance. Energy Environ Sci 13(12):5117–5125. https://doi.org/10.1039/d0ee02426k

    Article  CAS  Google Scholar 

  83. Lv J, Tang H, Huang J, Yan C, Liu K, Yang Q, Hu D, Singh R, Lee J, Lu S, Li G, Kan Z (2021) Additive-induced miscibility regulation and hierarchical morphology enable 17.5% binary organic solar cells. Energy Environ Sci 14(5):3044–3052. https://doi.org/10.1039/d0ee04012f

    Article  CAS  Google Scholar 

  84. Bao S, Yang H, Fan H, Zhang J, Wei Z, Cui C, Li Y (2021) Volatilizable Solid Additive-Assisted treatment enables Organic Solar cells with efficiency over 18.8% and fill factor exceeding 80%. Adv Mater 33:2105301. https://doi.org/10.1002/adma.202105301

    Article  CAS  Google Scholar 

  85. Jhuo H-J, Sharma S, Chen H-L, Chen S-A (2018) A nonvolatile morphology regulator for enhancing the molecular order in the active layer and power conversion efficiency of polymer solar cells. J Mater Chem A 6(19):8874–8879. https://doi.org/10.1039/c8ta01739e

    Article  CAS  Google Scholar 

  86. Oh J, Jung S, Jeong M, Lee B, Lee J, Cho Y, Lee SM, Chen S, Zhang Z-G, Li Y, Yang C (2019) Ring-perfluorinated non-volatile additives with a high dielectric constant lead to highly efficient and stable organic solar cells. J Mater Chem C 7(16):4716–4724. https://doi.org/10.1039/c9tc00762h

    Article  CAS  Google Scholar 

  87. Meng Y, Wu J, Guo X, Su W, Zhu L, Fang J, Zhang Z-G, Liu F, Zhang M, Russell TP, Li Y (2019) 11.2% efficiency all-polymer solar cells with high open-circuit voltage. Sci China Chem 62(7):845–850. https://doi.org/10.1007/s11426-019-9466-6

    Article  CAS  Google Scholar 

  88. Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y (2017) Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew Chem Int Ed Engl 56(43):13503–13507. https://doi.org/10.1002/anie.201707678

    Article  CAS  PubMed  Google Scholar 

  89. Bin H, Gao L, Zhang Z-G, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y (2016) 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun 7(1):13651. https://doi.org/10.1038/ncomms13651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Badgujar S, Song CE, Oh S, Shin WS, Moon S-J, Lee J-C, Jung IH, Lee SK (2016) Highly efficient and thermally stable fullerene-free organic solar cells based on a small molecule donor and acceptor. J Mater Chem A 4(42):16335–16340. https://doi.org/10.1039/c6ta06367e

    Article  CAS  Google Scholar 

  91. Yang W, Luo Z, Sun R, Guo J, Wang T, Wu Y, Wang W, Guo J, Wu Q, Shi M, Li H, Yang C, Min J (2020) Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nat Commun 11(1):1218. https://doi.org/10.1038/s41467-020-14926-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang T, Ma R, Cheng H, Xiao Y, Luo Z, Chen Y, Luo S, Liu T, Lu X, Yan H (2020) A compatible polymer acceptor enables efficient and stable organic solar cells as a solid additive. J Mater Chem A 8(34):17706–17712. https://doi.org/10.1039/d0ta06146h

    Article  CAS  Google Scholar 

  93. Tsai CL, Chan TH, Lu HC, Huang CL, Hung KE, Lai YY, Cheng YJ (2023) Synthesis of angular-shaped naphthodithiophenediimide and its donor-acceptor copolymers as nonvolatile polymer additives for organic solar cells. J Mater Chem A 11(14):7572–7583. https://doi.org/10.1039/D3TA00519D

    Article  CAS  Google Scholar 

  94. Hung KE, Lin YS, Xue YJ, Yang HR, Lai YY, Chang JW, Su CJ, Su AC, Hsu CS, Jeng US, Cheng YJ (2022) Non-volatile perfluorophenyl‐based additive for enhanced efficiency and thermal stability of nonfullerene organic solar cells via supramolecular fluorinated interactions. Adv Energy Mater 12(12):2103702. https://doi.org/10.1002/aenm.202103702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science and Technology Council, Taiwan (grant No. 110-2628-M-A49 -001-MY3 and 111-2221-E-A49-002) and Ministry of Education, Taiwan (SPROUT Project-Center for Emergent Functional Matter Science of National Yang Ming Chiao Tung University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Ju Cheng.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 223 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CL., Hung, KE., Lu, HC. et al. Volatile and non-volatile additives for Polymer Solar cells from Fullerene to non-fullerene systems. J Polym Res 30, 404 (2023). https://doi.org/10.1007/s10965-023-03784-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03784-6

Keywords

Navigation