Skip to main content

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Polymer solar cells are typically based on bulk-heterojunction active layers containing polymers and fullerene or other molecules, which are solution-processable. The easy processing is the biggest difference comparing to the small molecule-based solar cells. Tremendous efforts have been devoted to developing high-efficient materials, novel architectures and explore the underlying physical mechanism. The power conversion efficiency of polymer solar cells has been progressively improved to 12% for both single- and multijunction cells, which indicates a remarkable advance toward marketable production. This chapter will provide a comprehensive overview of the polymer solar cells. The content includes: a brief description of polymer solar cells, active layer materials, interfacial layer materials, electrodes, morphology of active layers, multi-function cells, as well as large-area solar modules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sariciftci N, Smilowitz L, Heeger AJ et al (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476

    Article  Google Scholar 

  2. Morita S, Zakhidov AA, Yoshino K (1992) Doping effect of buckminsterfullerene in conducting polymer: change of absorption spectrum and quenching of luminescene. Solid State Commun 82:249–252

    Article  Google Scholar 

  3. Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Sci-AAAS-Wkly Paper Ed 270:1789–1790

    Google Scholar 

  4. Lu L, Zheng T, Wu Q et al (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115:12666–12731

    Article  Google Scholar 

  5. Dou L, You J, Hong Z et al (2013) 25th anniversary article: a decade of organic/polymeric photovoltaic research. Adv Mater 25:6642–6671

    Article  Google Scholar 

  6. Hu HW, Jiang K, Yang GF et al (2015) Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells. J Am Chem Soc 137:14149–14157

    Article  Google Scholar 

  7. Scharber MC, Mühlbacher D, Koppe M et al (2006) Design rules for donors in bulk-heterojunction solar cells-Towards 10% energy-conversion efficiency. Adv Mater 18:789–794

    Article  Google Scholar 

  8. Zhang F, Inganäs O, Zhou Y et al (2016) The development of polymer-fullerene solar cells. Nat Sci Rev 3:222–239

    Google Scholar 

  9. Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280:1741–1744

    Article  Google Scholar 

  10. Koppe M, Brabec CJ, Heiml S et al (2009) Influence of molecular weight distribution on the gelation of P3HT and its impact on the photovoltaic performance. Macromolecules 42:4661–4666

    Article  Google Scholar 

  11. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21:1323–1338

    Article  Google Scholar 

  12. Kim Y, Cook S, Tuladhar SM et al (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat Mater 5:197–203

    Article  Google Scholar 

  13. Hou J, Huo L, He C et al (2005) Synthesis and absorption spectra of poly(3-(phenylenevinyl)thiophene)s with conjugated side chains. Macromolecules 39:594–603

    Article  Google Scholar 

  14. Hou J, Tan ZA, Yan Y et al (2006) Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. J Am Chem Soc 128:4911–4916

    Google Scholar 

  15. Hou J, Chen TL, Zhang S et al (2009) An easy and effective method to modulate molecular energy level of poly(3-alkylthiophene) for high-voc polymer solar cells. Macromolecules 42:9217–9219

    Article  Google Scholar 

  16. Zhang M, Guo X, Yang Y et al (2011) Downwards tuning the HOMO level of polythiophene by carboxylate substitution for high open-circuit-voltage polymer solar cells. Poly Chem 2:2900–2906

    Article  Google Scholar 

  17. Hu X, Shi M, Chen J et al (2011) Synthesis and photovoltaic properties of ester group functionalized polythiophene derivatives. Macromol Rapid Commun 32:506–511

    Google Scholar 

  18. Zhang M, Guo X, Ma W et al (2014) A polythiophene derivative with superior properties for practical application in polymer solar cells. Adv Mater 26:5880–5885

    Article  Google Scholar 

  19. Liang Y, Wu Y, Feng D et al (2009) Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc 131:56–57

    Article  Google Scholar 

  20. Liang Y, Feng D, Wu Y et al (2009) Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J Am Chem Soc 131:7792–7799

    Article  Google Scholar 

  21. Liang Y, Xu Z, Xia J et al (2010) For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138

    Article  Google Scholar 

  22. Lu L, Yu L (2014) Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Adv Mater 26:4413–4430

    Article  Google Scholar 

  23. He Z, Zhong C, Su S et al (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:591–595

    Google Scholar 

  24. Huo L, Zhang S, Guo X et al (2011) Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew Chem Int Ed 123:9871–9876

    Article  Google Scholar 

  25. Ye L, Zhang S, Zhao W et al (2014) Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem Mater 26:3603–3605

    Article  Google Scholar 

  26. Liao S-H, Jhuo H-J, Cheng Y-S et al (2013) Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater 25:4766–4771

    Article  Google Scholar 

  27. Shrotriya V, Wu EH-E, Li G et al (2006) Efficient light harvesting in multiple-device stacked structure for polymer solar cells. Appl Phys Lett 88:064104

    Article  Google Scholar 

  28. Shaheen SE, Brabec CJ, Sariciftci NS et al (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841–843

    Article  Google Scholar 

  29. Brabec CJ, Shaheen SE, Winder C et al (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80:1288–1290

    Article  Google Scholar 

  30. Granstrom M, Petritsch K, Arias AC et al (1998) Laminated fabrication of polymeric photovoltaic diodes. Nature 395:257–260

    Article  Google Scholar 

  31. Gupta D, Kabra D, Kolishetti N et al (2007) An efficient bulk-heterojunction photovoltaic cell based on energy transfer in graded-bandgap polymers. Adv Funct Mater 17:226–232

    Article  Google Scholar 

  32. Hoppe H, Egbe DAM, Muhlbacher D et al (2004) Photovoltaic action of conjugated polymer/fullerene bulk heterojunction solar cells using novel PPE-PPV copolymers. J Mater Chem 14:3462–3467

    Article  Google Scholar 

  33. Brédas J-L, Norton JE, Cornil J et al (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42:1691–1699

    Article  Google Scholar 

  34. Svensson M, Zhang F, Veenstra SC et al (2003) High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv Mater 15:988–991

    Article  Google Scholar 

  35. Li W, Qin R, Zhou Y et al (2010) Tailoring side chains of low band gap polymers for high efficiency polymer solar cells. Polymer 51:3031–3038

    Article  Google Scholar 

  36. Wang E, Wang L, Lan L et al (2008) High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett 92:033307

    Article  Google Scholar 

  37. Boudreault P-LT, Michaud A, Leclerc M (2007) A new poly(2,7-dibenzosilole) derivative in polymer solar cells. Macromol Rapid Commun 28:2176–2179

    Article  Google Scholar 

  38. Park SH, Roy A, Beaupre S et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297–302

    Article  Google Scholar 

  39. Mühlbacher D, Scharber M, Morana M et al (2006) High photovoltaic performance of a low-bandgap polymer. Adv Mater 18:2884–2889

    Article  Google Scholar 

  40. Coffin RC, Peet J, Rogers J et al (2009) Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat Chem 1:657–661

    Article  Google Scholar 

  41. Guo X, Zhou N, Lou SJ et al (2012) Bithiopheneimide–dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure–property–device performance correlations and comparison to Thieno[3,4-c]pyrrole-4,6-dione analogues. J Am Chem Soc 134:18427–18439

    Article  Google Scholar 

  42. Amb CM, Chen S, Graham KR et al (2011) Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J Am Chem Soc 133:10062–10065

    Article  Google Scholar 

  43. Zhou H, Yang L, Stuart AC et al (2011) Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew Chem Int Ed 50:2995–2998

    Article  Google Scholar 

  44. Wang N, Chen Z, Wei W et al (2013) Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments. J Am Chem Soc 135:17060–17068

    Article  Google Scholar 

  45. Wang X, Sun Y, Chen S et al (2012) Effects of π-conjugated bridges on photovoltaic properties of donor-π-acceptor conjugated copolymers. Macromolecules 45:1208–1216

    Article  Google Scholar 

  46. Subbiah J, Purushothaman B, Chen M et al (2015) Organic solar cells using a high-molecular-weight benzodithiophene-benzothiadiazole copolymer with an efficiency of 9.4%. Adv Mater 27:702–705

    Article  Google Scholar 

  47. Dou L, You J, Yang J et al (2012) Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photon 6:180–185

    Article  Google Scholar 

  48. Li W, Hendriks KH, Furlan A et al (2013) Universal correlation between fibril width and quantum efficiency in diketopyrrolopyrrole-based polymer solar cells. J Am Chem Soc 135:18942–18948

    Article  Google Scholar 

  49. Zhang M, Gu Y, Guo X et al (2013) Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%. Adv Mater 25:4944–4949

    Article  Google Scholar 

  50. Bin H, Zhang ZG, Gao L et al (2016) Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J Am Chem Soc 138:4657–4664

    Article  Google Scholar 

  51. Wang M, Hu X, Liu P et al (2011) Donor-acceptor conjugated polymer based on Naphtho[1,2-c:5,6-c]bis[1, 2, 5]thiadiazole for high-performance polymer solar cells. J Am Chem Soc 133:9638–9641

    Article  Google Scholar 

  52. Dong Y, Hu X, Duan C et al (2013) A series of new medium-bandgap conjugated polymers based on Naphtho[1,2-c:5,6-c]bis(2-octyl-[1–3]triazole) for high-performance polymer solar cells. Adv Mater 25:3683–3688

    Article  Google Scholar 

  53. Huo L, Liu T, Fan B et al (2015) Organic solar cells based on a 2D Benzo[1,2-b:4,5-b′]difuran-conjugated polymer with high-power conversion efficiency. Adv Mater 27:6969–6975

    Article  Google Scholar 

  54. Kim J-H, Lee M, Yang H et al (2014) A high molecular weight triisopropylsilylethynyl (TIPS)-benzodithiophene and diketopyrrolopyrrole-based copolymer for high performance organic photovoltaic cells. J Mater Chem A 2:6348–6352

    Article  Google Scholar 

  55. Huo L, Liu T, Sun X et al (2015) Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv Mater 27:2938–2944

    Article  Google Scholar 

  56. Hummelen JC, Knight BW, LePeq F et al (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538

    Article  Google Scholar 

  57. Sivaraman N, Dhamodaran R, Kaliappan I et al (1992) Solubility of C60 in organic solvents. J Org Chem 57:6077–6079

    Article  Google Scholar 

  58. He Y, Li Y (2011) Fullerene derivative acceptors for high performance polymer solar cells. Phys Chem Chem Phys 13:1970–1983

    Article  Google Scholar 

  59. Matsuo Y, Sato Y, Niinomi T et al (2009) Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene. J Am Chem Soc 131:16048–16050

    Article  Google Scholar 

  60. Mihailetchi VD, van Duren JKJ, Blom PWM et al (2003) Electron transport in a methanofullerene. Adv Funct Mater 13:43–46

    Article  Google Scholar 

  61. Li G, Shrotriya V, Huang J et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Article  Google Scholar 

  62. Wienk MM, Kroon JM, Verhees WJH et al (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed 42:3371–3375

    Article  Google Scholar 

  63. Troshin PA, Hoppe H, Renz J et al (2009) Material solubility-photovoltaic performance relationship in the design of novel fullerene derivatives for bulk heterojunction solar cells. Adv Funct Mater 19:779–788

    Article  Google Scholar 

  64. Chen J-D, Cui C, Li Y-Q et al (2014) Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv Mater 27:1035–1041

    Article  Google Scholar 

  65. Zhang S, Ye L, Zhao W et al (2015) Realizing over 10% efficiency in polymer solar cell by device optimization. Sci China Chem 58:1–9

    Google Scholar 

  66. Liu Y, Zhao J, Li Z et al (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5:5293

    Article  Google Scholar 

  67. Zhao J, Li Y, Yang G et al (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1:15027

    Article  Google Scholar 

  68. Zheng L, Zhou Q, Deng X et al (2004) Methanofullerenes used as electron acceptors in polymer photovoltaic devices. J Phys Chem B 108:11921–11926

    Article  Google Scholar 

  69. Mayorova JY, Nikitenko SL, Troshin PA et al (2007) Synthesis and investigation of fullerene-based acceptor materials. Mendeleev Commun 17:175–177

    Article  Google Scholar 

  70. Zhang Y, Yip H-L, Acton O et al (2009) A simple and effective way of achieving highly efficient and thermally stable bulk-heterojunction polymer solar cells using amorphous fullerene derivatives as electron acceptor. Chem Mater 21:2598–2600

    Article  Google Scholar 

  71. He Y, Chen H-Y, Hou J et al (2010) Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132:1377–1382

    Article  Google Scholar 

  72. He Y, Zhao G, Peng B et al (2010) High-yield synthesis and electrochemical and photovoltaic properties of indene-C70 bisadduct. Adv Funct Mater 20:3383–3389

    Article  Google Scholar 

  73. Guo X, Cui C, Zhang M et al (2012) High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy Environ Sci 5:7943–7949

    Article  Google Scholar 

  74. Meng X, Zhang W, Tan ZA et al (2012) Dihydronaphthyl-based [60]fullerene bisadducts for efficient and stable polymer solar cells. Chem Commun 48:425–427

    Google Scholar 

  75. Meng X, Zhang W, Tan ZA et al (2012) Highly efficient and thermally stable polymer solar cells with dihydronaphthyl-based [70]fullerene bisadduct derivative as the acceptor. Adv Funct Mater 22:2187–2193

    Google Scholar 

  76. Ye G, Chen S, Xiao Z et al (2012) o-Quinodimethane-methano[60]fullerene and thieno-o-quinodimethane-methano[60]fullerene as efficient acceptor materials for polymer solar cells. J Mater Chem 22:22374–22377

    Article  Google Scholar 

  77. Li W, Hendriks KH, Furlan A et al (2015) High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. J Am Chem Soc 137:2231–2234

    Article  Google Scholar 

  78. Scharber MC (2016) On the efficiency limit of conjugated polymer:fullerene-based bulk heterojunction solar cells. Adv Mater 28:1994–2001

    Article  Google Scholar 

  79. Eftaiha AAF, Sun J-P, Hill IG et al (2014) Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells. J Mater Chem A 2:1201–1213

    Google Scholar 

  80. Shivanna R, Shoaee S, Dimitrov S et al (2014) Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor. Energy Environ Sci 7:435–441

    Article  Google Scholar 

  81. Ye L, Sun K, Jiang W et al (2015) Enhanced efficiency in fullerene-free polymer solar cell by incorporating fine-designed donor and acceptor materials. ACS Appl Mater Interfaces 7:9274–9280

    Article  Google Scholar 

  82. Sun D, Meng D, Cai Y et al (2015) Non-fullerene-acceptor-based bulk-heterojunction organic solar cells with efficiency over 7%. J Am Chem Soc 137:11156–11162

    Article  Google Scholar 

  83. Meng D, Sun D, Zhong C et al (2016) High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor. J Am Chem Soc 138:375–380

    Article  Google Scholar 

  84. Zhang X, Lu Z, Ye L et al (2013) A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv Mater 25:5791–5797

    Article  Google Scholar 

  85. Zhang X, Zhan C, Yao J (2015) Non-fullerene organic solar cells with 6.1% efficiency through fine-tuning parameters of the film-forming process. Chem Mater 27:166–173

    Article  Google Scholar 

  86. Li H, Hwang Y-J, Courtright BAE et al (2015) Fine-tuning the 3D structure of nonfullerene electron acceptors toward high-performance polymer solar cells. Adv Mater 27:3266–3272

    Article  Google Scholar 

  87. Cnops K, Rand BP, Cheyns Det al (2014) 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat Commun 5:3406

    Google Scholar 

  88. Lin Y, Zhang Z-G, Bai H et al (2015) High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy Environ Sci 8:610–616

    Article  Google Scholar 

  89. Lin Y, Wang J, Zhang Z-G et al (2015) An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater 27:1170–1174

    Article  Google Scholar 

  90. Lin Y, He Q, Zhao F et al (2016) A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J Am Chem Soc 138:2973–2976

    Article  Google Scholar 

  91. Lin Y, Zhao F, He Q et al (2016) High-performance electron acceptor with thienyl side chains for organic photovoltaics. J Am Chem Soc 138:4955–4961

    Article  Google Scholar 

  92. Zhao W, Qian D, Zhang S et al (2016) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28:4734–4739

    Article  Google Scholar 

  93. Facchetti A (2013) Polymer donor–polymer acceptor (all-polymer) solar cells. Mater Today 16:123–132

    Article  Google Scholar 

  94. Zhao X, Zhan X (2011) Electron transporting semiconducting polymers in organic electronics. Chem Soc Rev 40:3728–3743

    Article  Google Scholar 

  95. Gao L, Zhang Z-G, Xue L et al (2016) All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv Mater 28:1884–1890

    Article  Google Scholar 

  96. Yan H, Chen Z, Zheng Y et al (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–686

    Article  Google Scholar 

  97. Deshmukh KD, Qin T, Gallaher JK et al (2015) Performance, morphology and photophysics of high open-circuit voltage, low band gap all-polymer solar cells. Energy Environ Sci 8:332–342

    Article  Google Scholar 

  98. Mori D, Benten H, Okada I et al (2014) Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy Environ Sci 7:2939–2943

    Article  Google Scholar 

  99. Kang H, Uddin MA, Lee C et al (2015) Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation. J Am Chem Soc 137:2359–2365

    Article  Google Scholar 

  100. Mu C, Liu P, Ma W et al (2014) High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Adv Mater 26:7224–7230

    Article  Google Scholar 

  101. Ye L, Jiao X, Zhou M et al (2015) Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells. Adv Mater 27:6046–6054

    Article  Google Scholar 

  102. Benten H, Nishida T, Mori D et al (2016) High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths. Energy Environ Sci 9:135–140

    Article  Google Scholar 

  103. Lee C, Kang H, Lee W et al (2015) High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology. Adv Mater 27:2466–2471

    Article  Google Scholar 

  104. Zhou E, Cong J, Zhao M et al (2012) Synthesis and application of poly(fluorene-alt-naphthalene diimide) as an n-type polymer for all-polymer solar cells. Chem Commun 48:5283–5285

    Article  Google Scholar 

  105. Xiao B, Ding G, Tan ZA et al (2015) A comparison of n-type copolymers based on cyclopentadithiophene and naphthalene diimide/perylene diimides for all-polymer solar cell applications. Poly Chem 6:7594–7602

    Google Scholar 

  106. Diao Y, Zhou Y, Kurosawa T et al (2015) Flow-enhanced solution printing of all-polymer solar cells. Nat Commun 6:7955

    Article  Google Scholar 

  107. Jung IH, Zhao D, Jang J et al (2015) Development and structure/property relationship of new electron accepting polymers based on thieno[2′,3′:4,5]pyrido[2,3-g]thieno[3,2-c]quinoline-4,10-dione for all-polymer solar cells. Chem Mater 27:5941–5948

    Article  Google Scholar 

  108. Hwang Y-J, Earmme T, Courtright BAE et al (2015) n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. J Am Chem Soc 137:4424–4434

    Article  Google Scholar 

  109. Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791

    Article  Google Scholar 

  110. Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767

    Article  Google Scholar 

  111. Heeger AJ (2014) 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv Mater 26:10–28

    Article  Google Scholar 

  112. Benanti TL, Venkataraman D (2006) Organic solar cells: an overview focusing on active layer morphology. Photosynth Res 87:73–81

    Article  Google Scholar 

  113. Huang Y, Kramer EJ, Heeger AJ et al (2014) Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev 114:7006–7043

    Article  Google Scholar 

  114. Dang MT, Hirsch L, Wantz G et al (2013) Controlling the morphology and performance of bulk heterojunctions in solar cells. lessons learned from the benchmark poly(3-hexylthiophene):[6, 6]-phenyl-c61-butyric acid methyl ester system. Chem Rev 113:3734–3765

    Article  Google Scholar 

  115. Lu L, Zheng T, Wu Q et al (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115:12666–12731

    Article  Google Scholar 

  116. McNeill CR (2012) Morphology of all-polymer solar cells. Energy Environ Sci 5:5653–5667

    Article  Google Scholar 

  117. Rivnay J, Mannsfeld SCB, Miller CE et al (2012) Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem Rev 112:5488–5519

    Article  Google Scholar 

  118. Pingree LSC, Reid OG, Ginger DS (2009) Electrical scanning probe microscopy on active organic electronic devices. Adv Mater 21:19–28

    Article  Google Scholar 

  119. Pingree LSC, MacLeod BA, Ginger DS (2008) The changing face of PEDOT:PSS films: substrate, bias, and processing effects on vertical charge transport. J Phys Chem C 112:7922–7927

    Article  Google Scholar 

  120. Reid OG, Munechika K, Ginger DS (2008) Space charge limited current measurements on conjugated polymer films using conductive atomic force microscopy. Nano Lett 8:1602–1609

    Article  Google Scholar 

  121. Coffey DC, Reid OG, Rodovsky DB et al (2007) Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy. Nano Lett 7:738–744

    Article  Google Scholar 

  122. Lin L-Y, Chen Y-H, Huang Z-Y et al (2011) A low-energy-gap organic dye for high-performance small-molecule organic solar cells. J Am Chem Soc 133:15822–15825

    Article  Google Scholar 

  123. Moon JS, Lee JK, Cho S et al (2009) “Columnlike” structure of the cross-sectional morphology of bulk heterojunction materials. Nano Lett 9:230–234

    Article  Google Scholar 

  124. Yang X, Loos J, Veenstra SC et al (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5:579–583

    Article  Google Scholar 

  125. Kozub DR, Vakhshouri K, Orme LM et al (2011) Polymer crystallization of partially miscible polythiophene/fullerene mixtures controls morphology. Macromolecules 44:5722–5726

    Article  Google Scholar 

  126. Loos J, Yang X, Koetse MM et al (2005) Morphology determination of functional poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene]/poly[oxa-1,4-phenylene-1,2-(1-cyanovinylene)-2-methoxy,5-(3,7-dimethyloctyloxy)-1,4-phenylene-1,2-(2-cyanovinylene)-1,4-phenylene] blends as used for all-polymer solar cells. J Appl Polym Sci 97:1001–1007

    Article  Google Scholar 

  127. Klein MFG, Pfaff M, Müller E et al (2012) Poly(3-hexylselenophene) solar cells: correlating the optoelectronic device performance and nanomorphology imaged by low-energy scanning transmission electron microscopy. J Polym Sci B Polym Phys 50:198–206

    Article  Google Scholar 

  128. Rogers JT, Schmidt K, Toney MF et al (2012) Time-resolved structural evolution of additive-processed bulk heterojunction solar cells. J Am Chem Soc 134:2884–2887

    Article  Google Scholar 

  129. Buss F, Schmidt-Hansberg B, Sanyal M et al (2016) Gaining further insight into the solvent additive-driven crystallization of bulk-heterojunction solar cells by in situ X-ray scattering and optical reflectometry. Macromolecules 49:4867–4874

    Article  Google Scholar 

  130. Su M-S, Kuo C-Y, Yuan M-C et al (2011) Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives. Adv Mater 23:3315–3319

    Article  Google Scholar 

  131. Zhou H, Chen Q, Li G et al (2014) Science 345:542

    Article  Google Scholar 

  132. Lu X, Hlaing H, Germack DS et al (2012) Bilayer order in a polycarbazole-conjugated polymer. Nat Commun 3:795

    Article  Google Scholar 

  133. Huang Y, Liu F, Guo X et al (2013) Manipulating backbone structure to enhance low band gap polymer photovoltaic performance. Adv Energy Mater 3:930–937

    Article  Google Scholar 

  134. Swaraj S, Wang C, Yan H et al (2010) Nanomorphology of bulk heterojunction photovoltaic thin films probed with resonant soft X-ray scattering. Nano Lett 10:2863–2869

    Article  Google Scholar 

  135. Collins BA, Li Z, Tumbleston JR et al (2013) Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7:PC71BM solar cells. Adv Energy Mater 3:65–74

    Article  Google Scholar 

  136. Ye L, Zhang S, Ma W et al (2012) From binary to ternary solvent: morphology fine-tuning of D/A blends in PDPP3T-based polymer solar cells. Adv Mater 24:6335–6341

    Article  Google Scholar 

  137. Carpenter JH, Hunt A, Ade H (2015) Characterizing morphology in organic systems with resonant soft X-ray scattering. J Electron Spectrosc Relat Phenom 200:2–14

    Article  Google Scholar 

  138. Ruderer MA, Guo S, Meier R et al (2011) Solvent-induced morphology in polymer-based systems for organic photovoltaics. Adv Funct Mater 21:3382–3391

    Article  Google Scholar 

  139. Mori D, Benten H, Ohkita H et al (2012) Polymer/polymer blend solar cells improved by using high-molecular-weight fluorene-based copolymer as electron acceptor. ACS Appl Mater Interfaces 4:3325–3329

    Article  Google Scholar 

  140. Kan B, Zhang Q, Li M et al (2014) Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J Am Chem Soc 136:15529–15532

    Article  Google Scholar 

  141. Zhou J, Zuo Y, Wan X et al (2013) Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J Am Chem Soc 135:8484–8487

    Article  Google Scholar 

  142. Kan B, Li M, Zhang Q et al (2015) A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J Am Chem Soc 137:3886–3893

    Article  Google Scholar 

  143. Zhang F, Jespersen KG, Björström C et al (2006) Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Adv Funct Mater 16:667–674

    Article  Google Scholar 

  144. Hoth CN, Choulis SA, Schilinsky P et al (2007) High photovoltaic performance of inkjet printed polymer: fullerene blends. Adv Mater 19:3973–3978

    Article  Google Scholar 

  145. Hoth CN, Steim R, Schilinsky P et al (2009) Topographical and morphological aspects of spray coated organic photovoltaics. Org Electron 10:587–593

    Article  Google Scholar 

  146. Hoth CN, Schilinsky P, Choulis SA et al (2008) Printing highly efficient organic solar cells. Nano Lett 8:2806–2813

    Article  Google Scholar 

  147. Zhao W, Ye L, Zhang S et al (2015) A universal halogen-free solvent system for highly efficient polymer solar cells. J Mater Chem A 3:12723–12729

    Article  Google Scholar 

  148. Chen K-S, Yip H-L, Schlenker CW et al (2012) Halogen-free solvent processing for sustainable development of high efficiency organic solar cells. Org Electron 13:2870–2878

    Article  Google Scholar 

  149. Duan C, Cai W, Hsu BBY et al (2013) Toward green solvent processable photovoltaic materials for polymer solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic behavior. Energy Environ Sci 6:3022–3034

    Article  Google Scholar 

  150. Chang J-H, Wang H-F, Lin W-C et al (2014) Efficient inverted quasi-bilayer organic solar cells fabricated by using non-halogenated solvent processes. J Mater Chem A 2:13398–13406

    Article  Google Scholar 

  151. Chueh C-C, Yao K, Yip H-L et al (2013) Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. Energy Environ Sci 6:3241–3248

    Article  Google Scholar 

  152. Zhang H, Yao H, Zhao W et al (2016) High-Efficiency Polymer Solar Cells Enabled by Environment-Friendly Single-Solvent Processing. Adv. Energy Mater. 6:1502177

    Article  Google Scholar 

  153. Berggren M, Gustafsson G, Inganäs O et al (1994) Thermal control of near-infrared and visible electroluminescence in alkyl-phenyl substituted polythiophenes. Appl Phys Lett 65:1489–1491

    Article  Google Scholar 

  154. Mihailetchi VD, Xie H, de Boer B et al (2006) Origin of the enhanced performance in poly(3-hexylthiophene): [6, 6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer. Appl Phys Lett 89:012107

    Article  Google Scholar 

  155. Shrotriya V, Yao Y, Li G et al (2006) Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Appl Phys Lett 89:063505

    Article  Google Scholar 

  156. Hegde R, Henry N, Whittle B et al (2012) The impact of controlled solvent exposure on the morphology, structure and function of bulk heterojunction solar cells. Sol Energy Mater Sol Cells 107:112–124

    Article  Google Scholar 

  157. Peet J, Soci C, Coffin RC et al (2006) Method for increasing the photoconductive response in conjugated polymer/fullerene composites. Appl Phys Lett 89:252105

    Article  Google Scholar 

  158. Peet J, Kim JY, Coates NE et al (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500

    Article  Google Scholar 

  159. Lee JK, Ma WL, Brabec CJ et al (2008) Processing additives for improved efficiency from bulk heterojunction solar cells. J Am Chem Soc 130:3619–3623

    Article  Google Scholar 

  160. Hoven CV, Dang X-D, Coffin RC et al (2010) Improved performance of polymer bulk heterojunction solar cells through the reduction of phase separation via solvent additives. Adv Mater 22:E63–E66

    Article  Google Scholar 

  161. Nguyen TL, Choi H, Ko SJ et al (2014) Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a [similar]300 nm thick conventional single-cell device. Energy Environ Sci 7:3040–3051

    Article  Google Scholar 

  162. Choi H, Ko S-J, Kim T et al (2015) Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor. Adv Mater 27:3318–3324

    Article  Google Scholar 

  163. Yao Y, Hou J, Xu Z et al (2008) Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv Funct Mater 18:1783–1789

    Article  Google Scholar 

  164. Hammond MR, Kline RJ, Herzing AA et al (2011) Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells. ACS Nano 5:8248–8257

    Article  Google Scholar 

  165. Lou SJ, Szarko JM, Xu T et al (2011) Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells. J Am Chem Soc 133:20661–20663

    Article  Google Scholar 

  166. Chang L, Lademann HWA, Bonekamp J-B et al (2011) Effect of trace solvent on the morphology of P3HT:PCBM bulk heterojunction solar cells. Adv Funct Mater 21:1779–1787

    Article  Google Scholar 

  167. Ye L, Jing Y, Guo X et al (2013) Remove the residual additives toward enhanced efficiency with higher reproducibility in polymer solar cells. J Phys Chem C 117:14920–14928

    Article  Google Scholar 

  168. Dittmer JJ, Marseglia EA, Friend RH (2000) Electron trapping in dye/polymer blend photovoltaic cells. Adv Mater 12:1270–1274

    Article  Google Scholar 

  169. Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13:85–88

    Article  Google Scholar 

  170. Ma W, Yang C, Gong X et al (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617–1622

    Article  Google Scholar 

  171. Chen D, Nakahara A, Wei D et al (2011) P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. Nano Lett 11:561–567

    Article  Google Scholar 

  172. Kim K, Carroll DL (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Appl Phys Lett 87:203113

    Article  Google Scholar 

  173. Chang M-Y, Chen Y-F, Tsai Y-S et al (2009) Blending platinum nanoparticles into poly(3-hexylthiophene):[6, 6]-phenyl-c61-butyric acid methyl ester enhances the efficiency of polymer solar cells. J Electrochem Soc 156:B234–B237

    Article  Google Scholar 

  174. Topp K, Borchert H, Johnen F et al (2010) Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells. J Phys Chem A 114:3981–3989

    Article  Google Scholar 

  175. Wang DH, Kim DY, Choi KW et al (2011) Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed 50:5519–5523

    Article  Google Scholar 

  176. Lu L, Xu T, Chen W et al (2013) The role of N-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. Nano Lett 13:2365–2369

    Article  Google Scholar 

  177. Sivula K, Ball ZT, Watanabe N et al (2006) Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene: fullerene solar cells. Adv Mater 18:206–210

    Article  Google Scholar 

  178. Tsai J-H, Lai Y-C, Higashihara T et al (2010) Enhancement of P3HT/PCBM photovoltaic efficiency using the surfactant of triblock copolymer containing poly(3-hexylthiophene) and poly(4-vinyltriphenylamine) segments. Macromolecules 43:6085–6091

    Article  Google Scholar 

  179. Bechara R, Leclerc N, Lévêque P et al (2008) Efficiency enhancement of polymer photovoltaic devices using thieno-thiophene-based copolymers as nucleating agents for polythiophene crystallization. Appl Phys Lett 93:013306

    Article  Google Scholar 

  180. Burke KB, Belcher WJ, Thomsen L et al (2009) Role of solvent trapping effects in determining the structure and morphology of ternary blend organic devices. Macromolecules 42:3098–3103

    Article  Google Scholar 

  181. Jea Uk L, Jae Woong J, Todd E et al (2010) Morphology control of a polythiophene–fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor–acceptor diblock copolymer. Nanotechnology 21:105201

    Article  Google Scholar 

  182. Miyanishi S, Tajima K, Hashimoto K (2009) Morphological stabilization of polymer photovoltaic cells by using cross-linkable poly(3-(5-hexenyl)thiophene). Macromolecules 42:1610–1618

    Article  Google Scholar 

  183. Kim BJ, Miyamoto Y, Ma B et al (2009) Photocrosslinkable polythiophenes for efficient, thermally stable, organic photovoltaics. Adv Funct Mater 19:2273–2281

    Article  Google Scholar 

  184. Cheng Y-J, Hsieh C-H, Li P-J et al (2011) Morphological stabilization by in situ polymerization of fullerene derivatives leading to efficient, thermally stable organic photovoltaics. Adv Funct Mater 21:1723–1732

    Article  Google Scholar 

  185. Drees M, Hoppe H, Winder C et al (2005) Stabilization of the nanomorphology of polymer-fullerene “bulk heterojunction” blends using a novel polymerizable fullerene derivative. J Mater Chem 15:5158–5163

    Article  Google Scholar 

  186. Graham KR, Mei J, Stalder R et al (2011) Polydimethylsiloxane as a macromolecular additive for enhanced performance of molecular bulk heterojunction organic solar cells. ACS Appl Mater Interfaces 3:1210–1215

    Article  Google Scholar 

  187. Yang L, Yan L, You W (2013) Organic solar cells beyond one pair of donor–acceptor: ternary blends and more. J Phys Chem Lett 4:1802–1810

    Article  Google Scholar 

  188. An Q, Zhang F, Zhang J et al (2016) Versatile ternary organic solar cells: a critical review. Energy Environ Sci 9:281–322

    Article  Google Scholar 

  189. Ameri T, Khoram P, Min J et al (2013) Organic ternary solar cells: a review. Adv Mater 25:4245–4266

    Article  Google Scholar 

  190. Lu L, Kelly MA, You W et al (2015) Status and prospects for ternary organic photovoltaics. Nat Photon 9:491–500

    Article  Google Scholar 

  191. Lu L, Xu T, Chen W et al (2014) Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat Photon 8:716–722

    Article  Google Scholar 

  192. Fang J, Wang Z, Zhang J et al (2015) Understanding the impact of hierarchical nanostructure in ternary organic solar cells. Adv Sci 2:1500250

    Google Scholar 

  193. Ma H, Yip H-L, Huang F et al (2010) Interface engineering for organic electronics. Adv Funct Mater 20:1371–1388

    Article  Google Scholar 

  194. Zhang F, Gadisa A, Inganäs O et al (2004) Influence of buffer layers on the performance of polymer solar cells. Appl Phys Lett 84:3906–3908

    Article  Google Scholar 

  195. Roman L, Berggren M, Inganäs O (1999) Polymer diodes with high rectification. Appl Phys Lett 75:3557–3559

    Article  Google Scholar 

  196. Savva A, Neophytou M, Koutsides C et al (2013) Synergistic effects of buffer layer processing additives for enhanced hole carrier selectivity in inverted organic photovoltaics. Org Electron 14:3123–3130

    Article  Google Scholar 

  197. Lin Q, Armin A, Nagiri RCR et al (2015) Electro-optics of perovskite solar cells. Nat Photon 9:106–112

    Article  Google Scholar 

  198. Baierl D, Fabel B, Gabos P et al (2010) Solution-processable inverted organic photodetectors using oxygen plasma treatment. Org Electron 11:1199–1206

    Article  Google Scholar 

  199. Glatthaar M, Niggemann M, Zimmermann B et al (2005) Organic solar cells using inverted layer sequence. Thin Solid Films 491:298–300

    Article  Google Scholar 

  200. Zhou Y, Cheun H, Choi S et al (2011) Optimization of a polymer top electrode for inverted semitransparent organic solar cells. Org Electron 12:827–831

    Article  Google Scholar 

  201. Tao C, Ruan S, Xie G et al (2009) Role of tungsten oxide in inverted polymer solar cells. Appl Phys Lett 94:043311

    Article  Google Scholar 

  202. Ratcliff EL, Meyer J, Steirer KX et al (2012) Energy level alignment in PCDTBT:PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency. Org Electron 13:744–749

    Article  Google Scholar 

  203. Teran-Escobar G, Pampel J, Caicedo JM et al (2013) Low-temperature, solution-processed, layered V2O5 hydrate as the hole-transport layer for stable organic solar cells. Energy Environ Sci 6:3088–3098

    Article  Google Scholar 

  204. Bai S, Cao M, Jin Y et al (2014) Low-temperature combustion-synthesized nickel oxide thin films as hole-transport interlayers for solution-processed optoelectronic devices. Adv. Energy Mater. 4:1301460

    Article  Google Scholar 

  205. Beek WJE, Wienk MM, Kemerink M et al (2005) Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J Phys Chem B 109:9505–9516

    Article  Google Scholar 

  206. White MS, Olson DC, Shaheen SE et al (2006) Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl Phys Lett 89:143517

    Article  Google Scholar 

  207. Jönsson S, Carlegrim E, Zhang F et al (2005) Photoelectron spectroscopy of the contact between the cathode and the active layers in plastic solar cells: the role of LiF. Jpn J Appl Phys 44:3695

    Article  Google Scholar 

  208. Zhang F, Ceder M, Inganas O (2007) Enhancing the photovoltage of polymer solar cells by using a modified cathode. Adv Mater 19:1835

    Article  Google Scholar 

  209. Zhou Y, Li F, Barrau S et al (2009) Inverted and transparent polymer solar cells prepared with vacuum-free processing. Sol Energy Mater Sol Cells 93:497–500

    Article  Google Scholar 

  210. Luo J, Wu H, He C et al (2009) Enhanced open-circuit voltage in polymer solar cells. Appl Phys Lett 95:043301

    Article  Google Scholar 

  211. He C, Zhong C, Wu H et al (2010) Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes. J Mater Chem 20:2617–2622

    Article  Google Scholar 

  212. Zheng L, Ma Y, Chu S et al (2014) Nanoscale 6:8171

    Article  Google Scholar 

  213. Tang Z, Andersson LM, George Z et al (2012) Interlayer for modified cathode in highly efficient inverted ITO-free organic solar cells. Adv Mater 24:554–558

    Article  Google Scholar 

  214. Sharma A, Hotchkiss PJ, Marder SR et al (2009) Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes. J Appl Phys 105:084507

    Article  Google Scholar 

  215. Bulliard X, Ihn S-G, Yun S et al (2010) Enhanced performance in polymer solar cells by surface energy control. Adv Funct Mater 20:4381–4387

    Article  Google Scholar 

  216. Zhou Y, Fuentes-Hernandez C, Shim J et al (2012) A universal method to produce low-work function electrodes for organic electronics. Science 336:327–332

    Article  Google Scholar 

  217. Kyaw AKK, Wang DH, Gupta V et al (2013) Efficient solution-processed small-molecule solar cells with inverted structure. Adv Mater 25:2397–2402

    Article  Google Scholar 

  218. O’Connor TF, Zaretski AV, Shiravi BA et al (2014) Stretching and conformal bonding of organic solar cells to hemispherical surfaces. Energy Environ Sci 7:370–378

    Article  Google Scholar 

  219. Höfle S, Schienle A, Bernhard C et al (2014) Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture. Adv Mater 26:5155–5159

    Article  Google Scholar 

  220. Weber C, Oberberg M, Weber D et al (2014) Improved morphology and performance of solution-processed metal-oxide thin-film transistors due to a polymer based interface modifier. Adv Mater Interfaces 1:1400137

    Article  Google Scholar 

  221. Głowacki ED, Romanazzi G, Yumusak C et al (2015) Epindolidiones—versatile and stable hydrogen-bonded pigments for organic field-effect transistors and light-emitting diodes. Adv Funct Mater 25:776–787

    Article  Google Scholar 

  222. Azzellino G, Grimoldi A, Binda M et al (2013) Fully inkjet-printed organic photodetectors with high quantum yield. Adv Mater 25:6829–6833

    Article  Google Scholar 

  223. Saracco E, Bouthinon B, Verilhac JM et al (2013) Work function tuning for high-performance solution-processed organic photodetectors with inverted structure. Adv Mater 25:6534–6538

    Article  Google Scholar 

  224. Zhou H, Chen Q, Li G et al (2014) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546

    Article  Google Scholar 

  225. Wang J, Wang N, Jin Y et al (2015) Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv Mater 27:2311–2316

    Article  Google Scholar 

  226. Kim HH, Park S, Yi Y et al (2015) Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO. Sci Rep 5:8968

    Google Scholar 

  227. Zhou Y, Khan TM, Shim JW et al (2014) All-plastic solar cells with a high photovoltaic dynamic range. J Mater Chem A 2:3492–3497

    Article  Google Scholar 

  228. Zhang FL, Johansson M, Andersson MR et al (2002) Polymer photovoltaic cells with conducting polymer anodes. Adv Mater 14:662–665

    Article  Google Scholar 

  229. Admassie S, Zhang FL, Manoj AG et al (2006) A polymer photodiode using vapour-phase polymerized PEDOT as an anode. Sol Energy Mater Sol Cells 90:133–141

    Article  Google Scholar 

  230. Zhou Y, Zhang F, Tvingstedt K et al (2008) Investigation on polymer anode design for flexible polymer solar cells. Appl Phys Lett 92:233308

    Article  Google Scholar 

  231. Kim N, Kee S, Lee SH et al (2014) Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv Mater 26(2268–72):2109

    Article  Google Scholar 

  232. Xia Y, Sun K, Ouyang J (2012) Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater 24:2436–2440

    Article  Google Scholar 

  233. Gilot J, Wienk MM, Janssen RAJ (2007) Double and triple junction polymer solar cells processed from solution. Appl Phys Lett 90:143512

    Article  Google Scholar 

  234. Granlund T, Nyberg T, Stolz Roman L et al (2000) Patterning of polymer light-emitting diodes with soft lithography. Adv Mater 12:269–273

    Article  Google Scholar 

  235. Gupta D, Wienk MM, Janssen RA (2013) Efficient polymer solar cells on opaque substrates with a laminated PEDOT: PSS top electrode. Adv Energy Mater 3:782–787

    Article  Google Scholar 

  236. Wang X, Ishwara T, Gong W et al (2012) High-performance metal-free solar cells using stamp transfer printed vapor phase polymerized poly(3,4-ethylenedioxythiophene) top anodes. Adv Funct Mater 22:1454–1460

    Article  Google Scholar 

  237. Yin LY, Zhao ZX, Jiang FY et al (2014) PEDOT:PSS top electrode prepared by transfer lamination using plastic wrap as the transfer medium for organic solar cells. Org Electron 15:2593–2598

    Article  Google Scholar 

  238. Docampo P, Hanusch FC, Stranks SD et al (2014) Adv Energy Mater 4:1400355

    Article  Google Scholar 

  239. Søndergaard R, Hösel M, Angmo D et al (2012) Roll-to-roll fabrication of polymer solar cells. Mater Today 15:36–49

    Article  Google Scholar 

  240. Angmo D, Dam HF, Andersen TR et al (2014) All-solution-processed, ambient method for ITO-free, roll-coated tandem polymer solar cells using solution-processed metal films. Energy Technology 2:651–659

    Article  Google Scholar 

  241. Andersen TR, Dam HF, Hosel M et al (2014) Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy Environ Sci 7:2925–2933

    Article  Google Scholar 

  242. Ago H, Petritsch K, Shaffer MSP et al (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 11:1281–1285

    Article  Google Scholar 

  243. Pasquier AD, Unalan HE, Kanwal A et al (2005) Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl Phys Lett 87:203511

    Article  Google Scholar 

  244. Feng Y, Ju X, Feng W et al (2009) Organic solar cells using few-walled carbon nanotubes electrode controlled by the balance between sheet resistance and the transparency. Appl Phys Lett 94:123302

    Article  Google Scholar 

  245. Kim S, Yim J, Wang X et al (2010) Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Adv Funct Mater 20:2310–2316

    Article  Google Scholar 

  246. Jeon I, Cui K, Chiba T et al (2015) Direct and dry deposited single-walled carbon nanotube films doped with MoOx as electron-blocking transparent electrodes for flexible organic solar cells. J Am Chem Soc 137:7982–7985

    Article  Google Scholar 

  247. Mei A, Li X, Liu L et al (2014) Science 345:295

    Article  Google Scholar 

  248. Wang X, Zhi L, Tsao N et al (2008) Transparent carbon films as electrodes in organic solar cells. Angew Chem 120:3032–3034

    Article  Google Scholar 

  249. Gomez De Arco L, Zhang Y, Schlenker CW et al (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873

    Article  Google Scholar 

  250. Yang Z, Ren J, Zhang Z et al (2015) Recent advancement of nanostructured carbon for energy applications. Chem Rev 115:5159–5223

    Article  Google Scholar 

  251. Wang Y, Chen X, Zhong Y et al (2009) Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett 95:063302

    Article  Google Scholar 

  252. Hyesung P, Jill AR, Ki Kang K et al (2010) Doped graphene electrodes for organic solar cells. Nanotechnology 21:505204

    Article  Google Scholar 

  253. Shi Y, Kim KK, Reina A et al (2010) Work function engineering of graphene electrode via chemical doping. ACS Nano 4:2689–2694

    Article  Google Scholar 

  254. Liu Z, Li J, Sun Z-H et al (2012) The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. ACS Nano 6:810–818

    Article  Google Scholar 

  255. Chang J-K, Lin W-H, Taur J-I et al (2015) Graphene anodes and cathodes: tuning the work function of graphene by nearly 2 eV with an aqueous intercalation process. ACS Appl Mater Interfaces 7:17155–17161

    Article  Google Scholar 

  256. Wu H, Hu L, Rowell MW et al (2010) Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett 10:4242–4248

    Article  Google Scholar 

  257. Tvingstedt K, Inganäs O (2007) Electrode grids for ITO free organic photovoltaic devices. Adv Mater 19:2893–2897

    Article  Google Scholar 

  258. Lee J-Y, Connor ST, Cui Y et al (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692

    Article  Google Scholar 

  259. De S, Higgins TM, Lyons PE et al (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3:1767–1774

    Article  Google Scholar 

  260. Lim J-W, Cho D-Y, Eun K et al (2012) Mechanical integrity of flexible Ag nanowire network electrodes coated on colorless PI substrates for flexible organic solar cells. Sol Energy Mater Sol Cells 105:69–76

    Article  Google Scholar 

  261. Han B, Pei K, Huang Y et al (2014) Uniform self-forming metallic network as a high-performance transparent conductive electrode. Adv Mater 26:873–877

    Article  Google Scholar 

  262. Guo F, Li N, Radmilovic VV et al (2015) Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. Energy Environ Sci 8:1690–1697

    Article  Google Scholar 

  263. Dennler G, Prall H-JR, Koeppe R et al (2006) Enhanced spectral coverage in tandem organic solar cells. Appl Phys Lett 89:073502

    Google Scholar 

  264. Kim JY, Lee K, Coates NE et al (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225

    Article  Google Scholar 

  265. Dou L, You J, Yang J et al (2012) Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photonics 6:180–185

    Article  Google Scholar 

  266. Zhou Y, Fuentes-Hernandez C, Shim JW et al (2012) High performance polymeric charge recombination layer for organic tandem solar cells. Energy Environ Sci 5:9827–9832

    Article  Google Scholar 

  267. Tong J, Xiong S, Zhou Y et al (2016) Flexible all-solution-processed all-plastic multijunction solar cells for powering electronic devices. Mater Horiz 452–459

    Google Scholar 

  268. Kang H, Kee S, Yu K et al (2014) Simplified tandem polymer solar cells with an ideal self-organized recombination layer. Adv Mater 27:1408–1413

    Article  Google Scholar 

  269. You J, Dou L, Yoshimura K et al (2013) A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 4:1446

    Google Scholar 

  270. Li W, Furlan A, Hendriks KH et al (2013) Efficient tandem and triple-junction polymer solar cells. J Am Chem Soc 135:5529–5532

    Article  Google Scholar 

  271. Bin Mohd Yusoff AR, Kim D, Kim HP et al (2015) A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%. Energy Environ Sci 8:303–316

    Google Scholar 

  272. Zimmermann B, Schleiermacher HF, Niggemann M et al (2011) ITO-free flexible inverted organic solar cell modules with high fill factor prepared by slot die coating. Sol Energy Mater Sol Cells 95:1587–1589

    Article  Google Scholar 

  273. Krebs FC, Spanggard H, Kjær T et al (2007) Large area plastic solar cell modules. Mater Sci Eng, B 138:106–111

    Article  Google Scholar 

  274. Lungenschmied C, Dennler G, Neugebauer H et al (2007) Flexible, long-lived, large-area, organic solar cells. Sol Energy Mater Sol Cells 91:379–384

    Article  Google Scholar 

  275. Zimmermann B, Glatthaar M, Niggemann M et al (2007) ITO-free wrap through organic solar cells-A module concept for cost-efficient reel-to-reel production. Sol Energy Mater Sol Cells 91:374–378

    Article  Google Scholar 

  276. Eggenhuisen TM, Galagan Y, Coenen EWC et al (2015) Digital fabrication of organic solar cells by Inkjet printing using non-halogenated solvents. Sol Energy Mater Sol Cells 134:364–372

    Article  Google Scholar 

  277. Kaduwal D, Schleiermacher H-F, Schulz-Gericke J et al (2015) Layout flexibility for sheet-to-sheet produced flexible ITO-free organic solar modules with organic functional layers slot die coated under ambient atmospheric conditions. Sol Energy Mater Sol Cells 136:200–205

    Article  Google Scholar 

  278. Hanisch J, Wahl T, Wessendorf CD et al (2016) Efficient polymer tandem modules and solar cells by doctor blading. J Mater Chem A 4:4771–4775

    Article  Google Scholar 

  279. Ye F, Chen Z, Zhao X et al (2015) “Layer-filter threshold” technique for near-infrared laser ablation in organic semiconductor device processing. Adv Funct Mater 25:4453–4461

    Article  Google Scholar 

  280. Lucera L, Machui F, Kubis P et al (2016) Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials. Energy Environ Sci 9:89–94

    Article  Google Scholar 

  281. Spyropoulos GD, Kubis P, Li N et al (2014) Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors. Energy Environ Sci 7:3284–3290

    Article  Google Scholar 

  282. Guo F, Kubis P, Przybilla T et al (2015) Nanowire interconnects for printed large-area semitransparent organic photovoltaic modules. Adv Energy Mater 5:1401779

    Article  Google Scholar 

  283. Lee J, Back H, Kong J et al (2013) Seamless polymer solar cell module architecture built upon self-aligned alternating interfacial layers. Energy Environ Sci 6:1152–1157

    Article  Google Scholar 

  284. Kang H, Hong S, Back H et al (2014) A new architecture for printable photovoltaics overcoming conventional module limits. Adv Mater 26:1602–1606

    Article  Google Scholar 

  285. Hong S, Kang H, Kim G et al (2016) A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency. Nat Commun 7:10279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengling Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jiang, Y., Li, Y., Tong, J., Mao, L., Zhou, Y., Zhang, F. (2018). Polymer Solar Cells. In: Tian, H., Boschloo, G., Hagfeldt, A. (eds) Molecular Devices for Solar Energy Conversion and Storage. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5924-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5924-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5923-0

  • Online ISBN: 978-981-10-5924-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics