Skip to main content
Log in

Thermal and barrier properties of nanocomposites prepared from poly(butylene succinate) reinforced with ZnO-decorated graphene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, the effects of different ZnO-decorated graphene (Graphene-ZnO) proportions on the comprehensive properties of Poly(butylene succinate) (PBS) nanocomposites were investigated. The results show that the nanocomposites have stronger mechanical properties, higher thermal stability, greater crystallinity, better barrier ability, and excellent antibacterial property due to the influence of Graphene-ZnO. The tensile strength, crystallinity, melting temperature, thermal stability and barrier performance of the nanocomposites reached the maximum when Graphene-ZnO with a content of 0.2 phr was added. Compared with pure PBS, when Graphene-ZnO was added to PBS at 0.2 phr, the tensile strength, yield strength, elongation at break and moisture barrier performance of PBS were significantly increased by 22.5%, 31.34% ,62.84% and 42.57% respectively. This improvement in barrier performance might be attributed to the presence of Graphene-ZnO extended the penetration path of molecules and the coordination from PBS and Graphene-ZnO, so as to narrow the H2O transmission path. The results of the buried soil test show that the weight loss rate of the nanocomposite increased with increase Graphene-ZnO content, which may be caused by boundary defects between nanofiller and matrix, and poor compatibility at high content of Graphene-ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing not applicable.

References

  1. Li Y, Xie L, Ma H (2015) Permeability and mechanical properties of plant fiber reinforced hybrid composites. Mater Des 86:313–320. https://doi.org/10.1016/j.matdes.2015.06.164

    Article  CAS  Google Scholar 

  2. Kalia S, Kaith B, Inderjeet K (2011) Cellulose fibers: bio-and nano-polymer composites: green chemistry and technology. Springer Sci Bus Media 13(8):209–217. https://doi.org/10.1007/978-3-642-17370-7

    Article  Google Scholar 

  3. Faria D, Júnior L, Almeida M (2020) Production of castor oil-based polyurethane resin composites reinforced with coconut husk fibres. J Polym Reserch 27:249. https://doi.org/10.1007/s10965-020-02238-7

    Article  CAS  Google Scholar 

  4. Mohammad G, Mehdi M, Sahar Z (2020) Zn3V3O8 nanostructures: facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceram Int 46:28894–28902. https://doi.org/10.1016/j.ceramint.2020.08.057

    Article  CAS  Google Scholar 

  5. Zhong Y, Godwin P, Jin Y (2020) Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review. Adv Ind Eng Polym Res 3(1):27–35. https://doi.org/10.1016/j.aiepr.2019.11.002

    Article  Google Scholar 

  6. Kraśniewska K, Galus S, Gniewosz M (2020) Biopolymers-based materials containing silver nanoparticles as active packaging for food applications-a review. Int J Mol Sci 21(3):698–715. https://doi.org/10.3390/ijms21030698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bari SS, Chatterjee A, Mishra S (2016) Biodegradable polymer nanocomposites: an overview. Polym Rev 56(2):287–328. https://doi.org/10.1080/15583724.2015.1118123

    Article  CAS  Google Scholar 

  8. Puchalski M, Szparaga G, Biela T (2018) Molecular and supramolecular changes in Polybutylene Succinate (PBS) and polybutylene succinate adipate (PBSA) copolymer during degradation in various environmental conditions. Polymers 10(3):251. https://doi.org/10.20944/preprints201801.0254.v1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Narancic T, Verstichel S, Chaganti SR (2018) Biodegradable plastic blends create new possibilities for end-of-Life Management of Plastics but they are not a panacea for Plastic Pollution. Environ Sci Technol 52(18):10441–10452. https://doi.org/10.1021/acs.est.8b02963

    Article  CAS  PubMed  Google Scholar 

  10. Yao SF, Chen XT, Ye HM (2017) Investigation of structure and crystallization behavior of poly(butylene succinate) by Fourier Transform Infrared Spectroscopy. J Phys Chem B 121(40):9476–9485. https://doi.org/10.1021/acs.jpcb.7b07954

    Article  CAS  PubMed  Google Scholar 

  11. Huang ZL, Qian L, Yin Q (2018) Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polym Test 66:319–326. https://doi.org/10.1016/j.polymertesting.2018.02.003

    Article  CAS  Google Scholar 

  12. Kuang T, Ju J, Yang Z (2018) A facile approach towards fabrication of lightweight biodegradable poly (butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength. Compos Sci Technol 159:171–179. https://doi.org/10.1016/j.compscitech.2018.02.021

    Article  CAS  Google Scholar 

  13. Gumede TP, Luyt AS, Muller AJ (2018) Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes. eXPRESS Polym Lett 12(6):505–529. https://doi.org/10.3144/expresspolymlett.2018.43

    Article  CAS  Google Scholar 

  14. Zhou XX, Dou Q (2022) Microstructures and properties of polybutylene succinate/soy protein isolate composites compatibilized by “in situ” graft copolymer. J Therm Anal Calorim 10:1–14. https://doi.org/10.1007/s10973-022-11855-x

    Article  CAS  Google Scholar 

  15. Su S, Kopitzky R, Tolga S (2019) Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): a brief review. Polymers 11(7):1193. https://doi.org/10.3390/polym11071193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. LimiAna P, Garcia-Sanoguera D, Quiles-Carrillo L (2018) Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compampatibilizers. Compos Part B Eng 144:153–162. https://doi.org/10.1016/j.compositesb.2018.02.031

    Article  CAS  Google Scholar 

  17. Huang A, Peng XF, Geng LH (2018) Electrospun poly (butylene succinate)/cellulose nanocrystals bio-nanocomposite scaffolds for tissue engineering: Preparation, characterization and in vitro evaluation. Polym Test 71:101–109. https://doi.org/10.1016/j.polymertesting.2018.08.027

    Article  CAS  Google Scholar 

  18. Tashan H, Khosravi-Darani K, Yazdian F (2019) Antibacterial Properties of Graphene based Nanomaterials: an emphasis on Molecular Mechanisms, Surface Engineering and size of sheets. Mini-Rev Org Chem 16(2):159–172. https://doi.org/10.2174/1570193X15666180712120309

    Article  CAS  Google Scholar 

  19. Marek AA, Verney V, Totaro G, Sisti L, Celli A, Cionci NB, Di Gioia D, Massacrier L, Leroux F (2020) Organo-modified LDH fillers endowing multi-functionality to bio-based poly(butylene succinate): an extended study from the laboratory to possible market - ScienceDirect. Appl Clay Sci 188. https://doi.org/10.1016/j.clay.2020.105502

  20. Wang X, Liu X, Han H (2013) Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf B 103:136–142. https://doi.org/10.1016/j.colsurfb.2012.09.044

    Article  CAS  Google Scholar 

  21. Ezzeddine I, Ghorbel N, Ilsouk M, Arous M, Lahcini M, Bouharras FZ, Raihane M, Kallel A (2020) Dielectric and thermal characteristics of Beidellite nanoclay-reinforced poly(butylene succinate). Mater Chem Phys 258. https://doi.org/10.1016/j.matchemphys.2020.123855

  22. Zhang Y, Hu Y, Wang J (2018) Engineering carbon nanotubes wrapped ammonium polyphosphate for enhancing mechanical and flame retardant properties of poly(butylene succinate). Compos Part A 115:215–227. https://doi.org/10.1016/j.compositesa.2018.09.020

    Article  CAS  Google Scholar 

  23. Chiu FC (2017) Halloysite nanotube- and organoclay-filled biodegradable poly(butylene succinate-co-adipate)/ maleated polyethylene blend based nanocomposites with enhanced rigidity. Compos Part B 110:193–203. https://doi.org/10.1016/j.compositesb.2016.10.091

    Article  CAS  Google Scholar 

  24. Li YD, Fu QQ, Wang M (2017) Morphology, crystallization and rheological behavior in poly(butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydr Polym Sci Technological Aspects Industrially Important Polysaccharides 164:75–82. https://doi.org/10.1016/j.carbpol.2017.01.089

    Article  CAS  Google Scholar 

  25. Gonghua H, Haitao C, Yang M (2018) Mussel-inspired polydopamine as a green, efficient, and stable platform to Functionalize Bamboo Fiber with amino-terminated alkyl for high performance poly(butylene succinate) composites. Polymers 10(4):461. https://doi.org/10.3390/polym10040461

    Article  CAS  Google Scholar 

  26. Ferreira Letícia P, Da Cunha BP, Kuster RM (2017) Synthesis and chemical modification of poly(butylene succinate) with rutin useful to the release of silybin. Ind Crops Prod 97:599–611. https://doi.org/10.1016/j.indcrop.2016.12.064

    Article  CAS  Google Scholar 

  27. Tsou CH, Zhao L, Gao C, Duan H, Lin X, Wen Y, Du J, Lin SM, Suen MC, Yu Y, Liu X, De Guzman MR (2020) Characterization of network bonding created by intercalated functionalized graphene and polyvinyl alcohol in nanocomposite films for reinforced mechanical properties and barrier performance. Nanotechnology 31(38):385703. https://doi.org/10.1088/1361-6528/ab9786

    Article  CAS  PubMed  Google Scholar 

  28. Wu CS (2018) Preparation, characterization, and bioactivity of the polyester and tea waste green composites. Polym Bull 75(11):5197–5216. https://doi.org/10.1007/s00289-018-2322-1

    Article  CAS  Google Scholar 

  29. Lule ZC, Shiferaw EW, Kim J (2020) Thermomechanical Properties of SiC-Filled Polybutylene Succinate Composite Fabricated via Melt Extrusion. Polymers. 12(2):418. https://doi.org/10.3390/polym12020418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Azhar SW, Xu F, Zhang Y (2019) Fabrication and mechanical properties of flaxseed fiber bundle-reinforced polybutylene succinate composites. J Ind Text 50(1):98–113. https://doi.org/10.1177/1528083718821876

    Article  CAS  Google Scholar 

  31. Karakehya N (2021) Comparison of the effects of various reinforcements on the mechanical, morphological, thermal and surface properties of poly(butylene succinate). Int J Adhes Adhes 110:102949–102949. https://doi.org/10.1016/j.ijadhadh.2021.102949

    Article  CAS  Google Scholar 

  32. Xu J, Manepalli PH, Zhu L (2019) Morphological, barrier and mechanical properties of films from poly (butylene succinate) reinforced with nanocrystalline cellulose and chitin whiskers using melt extrusion. J Polym Res 26:1–10. https://doi.org/10.1007/s10965-019-1783-8

    Article  CAS  Google Scholar 

  33. Hsieh HC, Wu N, Chuang TH (2020) Eco-friendly polyfluorene/poly (butylene succinate) blends and their electronic device application on biodegradable substrates. ACS Appl Polym Mater 2(6):2469–2476. https://doi.org/10.1021/acsapm.0c00439

    Article  CAS  Google Scholar 

  34. Huang A (2022) Facial Preparation of segregated poly(butylene succinate)/Carbon Nanotubes Composite Foams with Superior Conductive Properties via Synergistic Effect of high pressure solid phase molding and supercritical fluid foaming. Macromol Mater Eng 307(11):2200380. https://doi.org/10.1002/mame.202200380

    Article  CAS  Google Scholar 

  35. Ding Y, Wang J, Luo C (2021) Modification of poly(butylene succinate) with biodegradable glycolic acid: significantly improved hydrolysis rate retaining high toughness property. J Appl Polym Sci 139(19):52106. https://doi.org/10.1002/app.52106

    Article  CAS  Google Scholar 

  36. Mokhena TC, Sadiku ER, Ray SS (2021) The effect of expanded graphite/clay nanoparticles on thermal, rheological, and fire-retardant properties of poly(butylene succinate). Polym Compos 42(12):6370–6382. https://doi.org/10.1002/pc.26304

    Article  CAS  Google Scholar 

  37. Lewis JS, Perrier T, Barani Z (2021) Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications. Nanotechnology 32(14):142003. https://doi.org/10.1088/1361-6528/abc0c6

    Article  CAS  PubMed  Google Scholar 

  38. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145. https://doi.org/10.1021/cr900070d

    Article  CAS  Google Scholar 

  39. Liang G, Zhang J, An S (2021) Phase change material filled hybrid 2D/3D graphene structure with ultra-high thermal effusivity for effective thermal management. Carbon 8:101385. https://doi.org/10.1016/j.carbon.2020.12.046

    Article  CAS  Google Scholar 

  40. Yang G, Li L, Lee WB (2018) Structure of graphene and its disorders: a review. Sci Technol Adv Mater 19(1):613–648. https://doi.org/10.1080/14686996.2018.1494493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Isao Y, Tomohiro H, Aohan W (2021) Water-soluble graphene oxides grafted by polyanilines. Polym Compos 42(2):559–566. https://doi.org/10.1002/pc.25847

    Article  CAS  Google Scholar 

  42. Huang G, Chen W, Wu T (2020) Multifunctional graphene-based nano-additives toward high-performance polymer nanocomposites with enhanced mechanical, thermal, flame retardancy and smoke suppressive properties. Chem Eng J 410(2):2–12. https://doi.org/10.1016/j.cej.2020.127590

    Article  CAS  Google Scholar 

  43. Li X, Bandyopadhyay P, Nguyen TT (2018) Fabrication of functionalized graphene oxide/maleic anhydride grafted polypropylene composite film with excellent gas barrier and anticorrosion properties. J Membr Sci 547:80–92. https://doi.org/10.1016/j.memsci.2017.10.031

    Article  CAS  Google Scholar 

  44. İbrahim Yılmaz A, Ag B, Oy C (2020) Electrodeposition of zinc and reduced graphene oxide on porous nickel electrodes for high performance supercapacitors. J Phys Chem Solids 138. https://doi.org/10.1016/j.jpcs.2019.109307

  45. Tsou C-H, Du J-H, Yao W-H, Fu L, Wu C-S, Huang Y, Qu C-L, Liao B (2023) Improving Mechanical and Barrier Properties of Antibacterial Poly(Phenylene Sulfide) Nanocomposites Reinforced with Nano Zinc Oxide-Decorated Graphene. Polymers 15:2779. https://doi.org/10.3390/polym15132779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsou CH, Ge FF, Lin L, Yuan S, De Guzman MR, Potiyaraj P (2023) Barrier and Biodegradable Properties of Poly (butylene adipate-co-terephthalate) Reinforced with ZnO-Decorated Graphene rendering it antibacterial. ACS Appl Polym Mater 5(3):1681–1695. https://doi.org/10.1021/acsapm.2c015

    Article  CAS  Google Scholar 

  47. Yao YL, De Guzman MR, Duan H, Gao C, Lin X, Wen YH (2020) Infusing High-density Polyethylene with Graphene-Zinc Oxide to Produce Antibacterial Nanocomposites with Improved Properties. Chin J Polym Sci 38(08):155–166. https://doi.org/10.1007/s10118-020-2392-z

    Article  CAS  Google Scholar 

  48. Zhang R, Wang Y, Ma D (2019) Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. Ultrason Sonochem 59104731. https://doi.org/10.1016/j.ultsonch.2019.104731

  49. Jose J, Paulose SA (2020) Studies on natural rubber nanocomposites by incorporating zinc oxide modified graphene oxide. J Rubber Res 23(4):311–321. https://doi.org/10.1007/s42464-020-00059-3

    Article  CAS  Google Scholar 

  50. Tsou CH, Yao WH, Wu CS (2019) Preparation and characterization of renewable composites from Polylactide and Rice husk for 3D printing applications. J Polym Res 26(9):227. https://doi.org/10.1007/s10965-019-1882-6

    Article  CAS  Google Scholar 

  51. Tsou CH, Wu CS, Hung WS (2018) Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer 160. https://doi.org/10.1016/j.polymer.2018.11.048

  52. Unar IN, Soomro SA, Aziz S (2010) Effect of various additives on the physical properties of polyvinylchloride resin. Pak J Anal Environ Chem11(2):44–50. https://doi.org/article/d3ad60ae3e6448ecbe8e7280fe4720d4

  53. Tsou CH, Guo JP, Lei JA (2020) Characterizing Attapulgite-Reinforced Nanocomposites of Poly(lactic acid). Polym Sci Ser A 62(6):732–743. https://doi.org/10.1134/S0965545X20330068

    Article  Google Scholar 

  54. Tsou CH, Chen ZJ, Yuan S, Ma ZL, Wu CS, Yang T, Jia CF, De Guzman MR (2022) The preparation and performance of poly (butylene adipate) terephthalate/corn stalk composites. Curr Res Green Sustainable Chem 5:100329. https://doi.org/10.1016/j.crgsc.2022.100329

    Article  CAS  Google Scholar 

  55. Bhagwat PM, Ramachandran M, Raichurkar P, Mechanical (2017) Thermal and morphological characterization of Coir Reinforced Poly Butylene Succinate Composite. Technology 8(7):405–413

    Google Scholar 

  56. Tsou CH, Zeng R, Tsou CY, Chen JC, Sun YL, Ma ZL, De Guzman M, Tu LJ, Tian XY, Wu CS (2022) Mechanical, hydrophobic, and Barrier Properties of Nanocomposites of Modified Polypropylene Reinforced with Low-Content Attapulgite. Polymers 14:3696. https://doi.org/10.3390/polym14173696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsou CH, Ma ZL, De Guzman MR, Zhao L, Du J, Emori W, Gao C, Zhao Y, Yang T (2022) Wu J (2022) High-performance antibacterial nanocomposite films with a 3D network structure prepared from carboxylated graphene and modified polyvinyl alcohol. Prog. Org. Coat 166:106805. https://doi.org/10.1016/j.porgcoat.2022.106805

    Article  CAS  Google Scholar 

  58. Wang X, Song L, Yang HY, Lu HD, Hu Y (2011) Synergistic effect of Graphene on Antidripping and Fire Resistance of Intumescent Flame Retardant Poly(butylene succinate) composites. Ind Eng Chem Res 50(9):5376–5383. https://doi.org/10.1021/ie102566y

    Article  CAS  Google Scholar 

  59. Ge FF, Tsou CH, Yuan S, De Guzman MR, Zeng CY, Li J, Jia CF, Cheng BY, Yang PC, Gao C (2021) Barrier performance and biodegradability of antibacterial poly (butylene adipate-co-terephthalate) nanocomposites reinforced with a new MWCNT-ZnO nanomaterial. Nanotechnology 32(48):485706. https://doi.org/10.1088/1361-6528/ac1b52

    Article  CAS  Google Scholar 

  60. Tsou CH, Wu CS, Hung WS, De Guzman MR, Gao C, Wang RY, Chen J, Wan N, Peng YJ, Suen MC (2019) Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer 160:265–271. https://doi.org/10.1016/j.polymer.2018.11.048

  61. Tsou CH, Kao BJ, Suen MC, Yang MC, Wu TY, Tsou CY, Chen JC, Yao WH, Chu CK, Tuan XM, Hwang JZ (2014) Crystallisation behaviour and biocompatibility of poly (butylene succinate)/poly (lactic acid) composites. Mater Res Innovations 18(sup2):S2-372. https://doi.org/10.1179/1432891714Z.000000000435

    Article  CAS  Google Scholar 

  62. Guo JP, Tsou CH, De Guzman MR, Wu CS, Zhang X, Chen Z, Wen YH, Yang T, Zhuang YJ, Ge FF, Chen Z (2021) Preparation and characterization of bio-based green renewable composites from poly (lactic acid) reinforced with corn stover. J Polym Res 28(6):1–15. https://doi.org/10.1007/s10965-021-02559-1

  63. Seehra MS, Geddam UK, Schwegler-Berry D, Stefaniak AB (2015) Detection and quantification of 2H and 3R phases in commercial graphene-based materials. Carbon 95:818–823. https://doi.org/10.1016/j.carbon.2015.08.109

    Article  CAS  Google Scholar 

  64. Wen YH, Tsou CH, De Guzman MR, Huang D, Yu YQ, Gao C, Zhang XM, Du J, Zheng YT, Zhu H, Wang ZH (2022) Antibacterial nanocomposite films of poly (vinyl alcohol) modified with zinc oxide-doped multiwalled carbon nanotubes as food packaging. Polym Bull 79(6):3847–3866. https://doi.org/10.1007/s00289-021-03666-1

    Article  CAS  Google Scholar 

  65. Ge FF, Wan N, Tsou CH, Chen JC, Wu CS, De Guzman MR, Zeng CY, Zhou L, Wang YT, Luo X, Yu YQ (2022) Thermal properties and hydrophilicity of antibacterial poly (phenylene sulfide) nanocomposites reinforced with zinc oxide-doped multiwall carbon nanotubes. J Polym Res 29(3):1–19. https://doi.org/10.1007/s10965-022-02931-9

    Article  CAS  Google Scholar 

  66. Yao YL, De Guzman MR, Duan H, Gao C, Lin X, Wen YH, Du J, Lin L, Chen JC, Wu CS, Suen MC (2020) Infusing high-density polyethylene with graphene-zinc oxide to produce antibacterial nanocomposites with improved properties. Chin J Polym Sci 38(8):898–907. https://doi.org/10.1007/s10118-020-2392-z

    Article  CAS  Google Scholar 

  67. Chen S, De Guzman MR, Tsou CH, Li M, Suen MC, Gao C, Tsou CY (2022) Hydrophilic and absorption properties of reversible nanocomposite polyvinyl alcohol hydrogels reinforced with graphene-doped zinc oxide nanoplates for enhanced antibacterial activity. Polym J 1–17. https://doi.org/10.1038/s41428-022-00711-2

  68. Tsou CH, Zeng R, Wan N, De Guzman MR, Hu XF, Yang T, Gao C, Wei X, Yi J, Lan L, Yang RT (2022) Biological oyster shell waste enhances polyphenylene sulfide composites and endows them with antibacterial properties. Chin J Chem Eng 5:100314. https://doi.org/10.1016/j.cjche.2022.08.022

    Article  Google Scholar 

  69. Tsou CH, Chen S, Li X, Chen JC, De Guzman MR, Sun YL, Du J, Zhang Y (2022) Highly resilient antibacterial composite polyvinyl alcohol hydrogels reinforced with CNT-NZnO by forming a network of hydrogen and coordination bonding. J Polym Res 29(10):1–16. https://doi.org/10.1007/s10965-022-03248-3

    Article  CAS  Google Scholar 

  70. Wen YH, Tsou CH, De Guzman MR, Wu CS, Liao B, Du J, Wei W, Sun YL (2021) Preparation of antibacterial nanocomposites of zinc oxide-doped graphene reinforced polypropylene with high comprehensive properties. NANO 16(03):2150026. https://doi.org/10.1142/S1793292021500260

    Article  CAS  Google Scholar 

  71. Yuan L, Qu CL, Tsou CH, De Guzman MR, Huang X, Gao C, Sun YL, Yang T, Zeng C, Luo X, Tsou CY (2022) Morphology and thermal properties of low-density polyethylene/graphite composite films as potential pH sensors prepared via heat treatment and natural drying. J Polym Res 29(11):1–16. https://doi.org/10.1007/s10965-022-03287-w

    Article  CAS  Google Scholar 

  72. Tsou CH, Ma ZL, Yang T, De Guzman MR, Chen S, Wu CS, Hu XF, Huang X, Sun YL, Gao C, Zhao WB (2022) Reinforced distiller’s grains as bio-fillers in environment-friendly poly (ethylene terephthalate) composites. Polym Bull 2022:1–22. https://doi.org/10.1007/s00289-022-04318-8

    Article  CAS  Google Scholar 

  73. Li X, Zhang YJ, Tsou CH, Wen YH, Wu CS, De Guzman MR, Zeng CY, Gao C, Zou JJ, Zhao WB, Sun YL (2021) A new application of Hollow Nanosilica added to modified polypropylene to prepare Nanocomposite Films. NANO 16(10):2150117. https://doi.org/10.1142/S1793292021501174

    Article  CAS  Google Scholar 

  74. Tsou CH, Yao WH, Lu YC, Tsou CY, Wu CS, Chen J, Wang RY, Su C, Hung WS, De Guzman M, Suen MC (2017) Antibacterial property and cytotoxicity of a poly (lactic acid)/nanosilver-doped multiwall carbon nanotube nanocomposite. Polymers 9(3):100. https://doi.org/10.3390/polym9030100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bo Y, Zhao H, Lu L (2019) Effects of β-nucleating agent and graphene oxide on the crystallization and polymorphic composition of isotactic polypropylene / graphene oxide composites for bridge pavement. J Polym Res 26:9. https://doi.org/10.1007/s10965-018-1622-3

    Article  CAS  Google Scholar 

  76. Sabet M, Soleiman H (2019) Graphene impact on thermal characteristics of LDPE. Polym Sci Ser A 61(6):922–930. https://doi.org/10.1134/S0965545X20010095

    Article  CAS  Google Scholar 

  77. Zhao S, Liu K, Zhou S, Shi Y, Xin Z (2017) A novel self-dispersed β nucleating agent for isotactic polypropylene and its unique nucleation behavior and mechanism. Polymer 132:69–78. https://doi.org/10.1016/j.polymer.2017.10.024

    Article  CAS  Google Scholar 

  78. Cheng Y, Yu G (2020) The research of interface microdomain and corona-resistance characteristics of micro-nano-ZnO/LDPE. Polymers 12(3):563. https://doi.org/10.3390/polym12030563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ma ZL, Tsou CH, Cui X, Wu J, Lin L, Wen H, De Guzman MR, Wang CY, Liu H, Xiong Q, Liao B (2022) Barrier properties of nanocomposites from high-density polyethylene reinforced with natural attapulgite. Curr Res Green Sustainable Chem 5:100314. https://doi.org/10.1016/j.crgsc.2022.100314

    Article  CAS  Google Scholar 

  80. Wen YH, De Guzman MR, Lin X, Chen JC, Gao C, Wu CS, Wang ZH, Huang D, Du J, Yu YQ, Zhao W (2020) Antibacterial nanocomposites of polypropylene modified with silver-decorated multiwalled carbon nanotubes. NANO 15(09):2050112. https://doi.org/10.1142/S179329202050112X

    Article  CAS  Google Scholar 

  81. Khalili N, Oraei M, Gohari G, Panahirad S, Nourafcan H, Hano C (2022) Chitosan-Enriched Salicylic Acid Nanoparticles Enhanced Anthocyanin Content in Grape (Vitis vinifera L. cv. Red Sultana) Berries. Polymers 14(16):3349. https://doi.org/10.3390/polym14163349

    Article  CAS  PubMed  Google Scholar 

  82. Peña MG, Sanchez LO, Flores LA, Almendarez A, Gutierrez EJ, Navarrete J, Pérez E, Gonzalez JA (2022) Mechanical, antibacterial, and non-cytotoxic performance of polypropylene nanocomposites reinforced with sTiO2 deposited with AgNPs mediated by quercetin biomolecule. Polym Bulletin 1–27. https://doi.org/10.1007/s00289-022-04375-z

  83. Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2, 6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98(2):643–650. https://doi.org/10.1016/j.polymdegradstab.2012.11.010

  84. Labhasetwar V, Song C, Humphrey W, Shebuski R, Levy RJ (1998) Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J Pharm Sci 87(10):1229–1234. https://doi.org/10.1021/js980021f

    Article  CAS  PubMed  Google Scholar 

  85. Moussaif N, Irusta S, Yagüe C, Arruebo M, Meier JG, Crespo C, Jimenez MA, Santamaría J (2010) Mechanically reinforced biodegradable nanocomposites. A facile synthesis based on PEGylated silica nanoparticles. Polymer 51(26):6132–6139. https://doi.org/10.1016/j.polymer.2010.10.042

  86. Hosseinnezhad R, Shear-Induced (2021) Nanofiber-Nucleated crystallization of Novel Aliphatic–Aromatic Copolyesters delineated for in situ generation of biodegradable nanocomposites. Polymers 13(14):2315. https://doi.org/10.3390/POLYM13142315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Glaskova T, Starkova O, Gaidukovs S, Platnieks O, Gaidukova G (2021) Durability of biodegradable polymer nanocomposites. Polymers 13(19):3375. https://doi.org/10.3390/polym13193375

    Article  CAS  Google Scholar 

  88. Sahoo PK, Jena DK (2018) Synthesis and study of mechanical and fire retardant properties of (carboxymethyl cellulose-g-polyacrylonitrile)/montmorillonite biodegradable nanocomposite. J Polym Res 25(12):1–10. https://doi.org/10.1007/s10965-018-1659-3

    Article  CAS  Google Scholar 

  89. Augustine R, Malik HN, Singhal DK, Mukherjee A, Malakar D, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21(3):1–17. https://doi.org/10.1007/s10965-013-0347-6

    Article  CAS  Google Scholar 

  90. Shinde RS, More RA, Adole VA, Koli PB, Pawar TB, Jagdale BS, Desale BS, Sarnikar YP, Design (2021) Fabrication, antitubercular, antibacterial, antifungal and antioxidant study of silver doped ZnO and CuO nano candidates: a comparative pharmacological study. Curr Res Green Sustainable Chem 4:100138. https://doi.org/10.1016/j.crgsc.2021.100138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the following organizations: Sichuan Province Science and Technology Support Program (2022JDTD0016); Supported by the Scientific Research and Innovation Team Program of Sichuan University of Science and Technology; Supported by The Key Laboratory of Fine Chemical Application TechnoLogy of Luzhou (HYJH-2308-B); Chengdu Science and Technology (2021-RC02-00005-CG); Zigong City Science and Technology (2019CXRC01)

Funding

This research was funded by Sichuan Province Science and Technology Support Program (2022JDTD0016); Scientific Research and Innovation Team Program of Sichuan University of Science and Technology; Chengdu Science and Technology (2021-RC02-00005-CG); Zigong City Science and Technology (2019CXRC01); The Key Laboratory of Fine Chemical Application TechnoLogy of Luzhou (HYJH-2308-B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pranut Potiyaraj or Chi-Hui Tsou.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Institutional review board statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 714 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Ff., Preuksarattanawut, C., Zeng, S. et al. Thermal and barrier properties of nanocomposites prepared from poly(butylene succinate) reinforced with ZnO-decorated graphene. J Polym Res 30, 333 (2023). https://doi.org/10.1007/s10965-023-03692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03692-9

Keywords

Navigation