Skip to main content
Log in

Infusing High-density Polyethylene with Graphene-Zinc Oxide to Produce Antibacterial Nanocomposites with Improved Properties

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Nanocomposites of high-density polyethylene (HDPE) modified with 0.2 phr graphene-zinc oxide (GN-ZnO) exhibited optimal mechanical properties and thermal stability. Two other nano-materials—GN and nano-ZnO—were also used to compare them with GN-ZnO. Increasing the content of GN-ZnO gradually enhanced the antibacterial and barrier properties, but the addition of 0.3 phr GN-ZnO led to agglomeration that caused defects in the nanocomposites. Herein, we investigated the antibacterial and barrier properties of HDPE nanocomposites infused with different nanoparticles (GN, ZnO, GN-ZnO) of varying concentrations. HDPE and the nanoparticles were melt-blended together in a Haake-Buchler Rheomixer to produce a new environment-friendly nano-material with improved physical and chemical properties. The following characterizations were conducted: tensile test, thermogravimetric analysis, morphology, differential scanning calorimetry, X-ray diffraction, antibacterial test, and oxygen and water vapor permeation test. The results showed that the crystallinity of HDPE was affected with the addition of GN-ZnO, and the nanocomposites had effective antibacterial capacity, strong mechanical properties, high thermal stability, and excellent barrier performance. This type of HDPE nanocomposites reinforced with GN-ZnO would be attractive for packaging industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, J.; Bazaka, K.; Anderson, L. J.; White, R. D.; Jacob, M. V. Materials and methods for encapsulation of OPV: a review. Renew. Sustainable. Energy. Rev.2013, 27, 104–117.

    CAS  Google Scholar 

  2. Lagaron, J. M.; Gimenez, E.; Catala, R.; Gavara, R. Mechanisms of moisture sorption in barrier polymers used in food packaging: amorphous polyamide vs. high-barrier ethylene-vinyl alcohol copolymer studied by vibrational spectroscopy. Macromol. Chem. Phys.2003, 204, 704–713.

    CAS  Google Scholar 

  3. Tsou, C.; Yao, W.; Lu, Y. Antibacterial property and cytotoxicity of a poly(lactic acid)/nanosilver-doped multiwall carbon nanotube nanocomposite. Polymers2017, 9, 100–113.

    PubMed Central  Google Scholar 

  4. Jo, J. H.; Li, Y.; Kim, S. M.; Kim, H. E.; Koh, Y. H. Hydroxyapatite/poly (ε-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility. J. Biomater. Appl.2013, 28, 617–625.

    CAS  PubMed  Google Scholar 

  5. Pan, W.; Yin, D. X.; Jing, H. R.; Chang, H. J.; Wen, H.; Liang, D. H. Core-corona structure formed by hyaluronic acid and poly(L-lysine) via kinetic path. Chinese J. Polym. Sci.2019, 37, 36–42.

    CAS  Google Scholar 

  6. Zhang, K.; Li, X.; Nie, M.; Wang, Q. Helical flow-driven alignment of off-axial silver-functionalized titanium dioxide fibers in polypropylene tube suitable for medical applications. Compos. Sci. Technol.2018, 158, 121–127.

    CAS  Google Scholar 

  7. Zheng, P.; Zhang, P.; Sun, Z.; Zhu, C.; An, Q. Nanosrructured polyelectrolyte-surfactant complex pervaporation membranes for ethanol recovery: the relationship between the membrane structure and separation performance. Chinese J. Polym. Sci.2018, 36, 25–33.

    CAS  Google Scholar 

  8. Pelto, J.; Verho, T.; Ronkainen, H.; Kaunisto, K.; Metsäjoki, J.; Seitsonen, J.; Karttunen, M. Matrix morphology and the particle dispersion in HDPE nanocomposites with enhanced wear resistance. Polym. Test.2019, 77, 105897.

    Google Scholar 

  9. Tsou, C. H.; Yao, W. H.; Hung, W. S.; Suen, M. C.; de Guzman, M. R.; Chen, J.; Tsou, C. Y.; Wang, R. Y.; Chen, J. C.; Wu, C. S. Innovative plasma process of grafting methyl diallylammonium salt onto polypropylene to impart antibacterial and hydrophilic surface properties. Ind. Eng. Chem. Res.2018, 57, 2537–2545.

    CAS  Google Scholar 

  10. Tsou, C. H.; Wu, C. S.; Hung, W. S.; de Guzman, M. R.; Gao, C.; Wang, R. Y.; Suen, M. C. Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer2019, 160, 265–271.

    CAS  Google Scholar 

  11. Niknezhad, S.; Isayev, A. I. Online ultrasonic film casting of LLDPE and LLDPE/clay nanocomposites. J. Appl. Polym. Sci.2013, 129, 263–275.

    CAS  Google Scholar 

  12. Alebooyeh, R.; MohammadiNafchi, A.; Jokr, M. The effects of ZnO nanorods on the characteristics of sago starch biodegradable films. J. Chem. Health. Risks2012, 2, 13–16.

    Google Scholar 

  13. Arfat, Y. A.; Benjakul, S.; Prodpran, T.; Sumpavapol, P.; Songtipya, P. Physicomechanical characterization and antimicrobial properties of fish protein isolate/fish skin gelatin-zinc oxide (ZnO) nanocomposite films. Food Bioprocess. Technol.2016, 9, 101–112.

    CAS  Google Scholar 

  14. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.

    CAS  PubMed  Google Scholar 

  15. He, F.; Fan, J.; Ma, D.; Zhang, L.; Leung, C.; Chan, H. L. The attachment of FeO nanoparticles to graphene oxide by covalent bonding. Carbon2010, 48, 3139–3144.

    CAS  Google Scholar 

  16. He, F.; Lam, K. H.; Fan, J.; Chan, L. H. Improved dielectric properties for chemically functionalized exfoliated graphite nanoplates/syndiotactic polystyrene composites prepared by a solution-blending method. Carbon2014, 80, 496–503.

    CAS  Google Scholar 

  17. Girdthep, S.; Sankong, W.; Pongmalee, A.; Saelee, T.; Punyodom, W.; Meepowpan, P.; Worajittiphon, P. Enhanced crystallization, thermal properties, and hydrolysis resistance of poly(lactic acid) and its stereocomplex by incorporation of graphene nanoplatelets. Polym. Test.2017, 61, 229–239.

    CAS  Google Scholar 

  18. Lau, K. Y.; Ker, P. J.; Abas, A. F.; Alresheedi, M. T.; Mahdi, M. A. Long-term stability and sustainability evaluation for modelocked fiber laser with graphene/PMMA saturable absorbers. Opt. Commun.2019, 435, 251–254.

    CAS  Google Scholar 

  19. Roshan, M. J.; Jeevika, A.; Bhattacharyya, A.; Shankaran, D. R. One-pot fabrication and characterization of graphene/PMMA composite flexible films. Mater. Res. Bull.2018, 105, 133–141.

    CAS  Google Scholar 

  20. Kashyap, S.; Pratihar, S. K.; Behera, S. K. Strong and ductile graphene oxide reinforced PVA nanocomposites. J. Alloys. Compd.2016, 684, 254–260.

    CAS  Google Scholar 

  21. Shao, L.; Li, J.; Guang, Y.; Zhang, Y.; Zhang, H.; Che, X.; Wang, Y. PVA/polyethyleneimine-functionalized graphene composites with optimized properties. Mater. Des.2016, 99, 235–242.

    CAS  Google Scholar 

  22. Elashmawi, I. S.; Alatawi, N. S.; Elsayed, N. H. Preparation and characterization of polymer nanocomposites based on PVDF/PVC doped with graphene nanoparticles. Results. Phys.2017, 7, 636–640.

    Google Scholar 

  23. Hasan, M.; Lee, M. Enhancement of the thermo-mechanical properties and efficacy of mixing technique in the preparation of graphene/PVC nanocomposites compared to carbon nanotubes/PVC. Prog. Nat. Sci: Mater. Int.2014, 24, 579–587.

    CAS  Google Scholar 

  24. Babaahmadi, V.; Montazer, M.; Gao, W. Low temperature welding of graphene on PET with silver nanoparticles producing higher durable electro-conductive fabric. Carbon2017, 118, 443–451.

    CAS  Google Scholar 

  25. Cao, X.; Liu, X.; Li, X.; Lei, X.; Chen, W. Conductive stability of graphene on PET and glass substrates under blue light irradiation. Opt. Commun.2018, 406, 169–172.

    CAS  Google Scholar 

  26. Koutsoumpis, S.; Klonos, P.; Raftopoulos, K. N.; Papadakis, C. M.; Bikiaris, D.; Pissis, P. Morphology, thermal properties and molecular dynamics of syndiotactic polystyrene (s-PS) nanocomposites with aligned graphene oxide and graphene nanosheets. Polymer2018, 153, 548–557.

    CAS  Google Scholar 

  27. Mistretta, M. C.; Botta, L.; Vinci, A. D.; Ceraulo, M.; La Mantia, F. P. Photo-oxidation of polypropylene/graphene nanoplatelets composites. Polym. Degrad. Stab.2019, 160, 35–43.

    CAS  Google Scholar 

  28. Li, C. Q.; Zha, J. W.; Long, H. Q.; Wang, S. J.; Zhang, D. L.; Dang, Z. M. Mechanical and dielectric properties of graphene incorporated polypropylene nanocomposites using polypropylene-graft-maleic anhydride as a compatibilizer. Compos. Sci. Technol.2017, 153, 111–118.

    CAS  Google Scholar 

  29. La Mantia, F. P.; Ceraulo, M.; Mistretta, M. C.; Botta, L. Effect of the elongational flow on morphology and properties of polypropylene/graphene nanoplatelets nanocomposites. Polym. Test.2018, 71, 10–17.

    CAS  Google Scholar 

  30. Li, H.; Xie, X. M. Polyolefin-functionalized graphene oxide and its GO/HDPE nanocomposite with excellent mechanical properties. Chin. Chem. Lett.2018, 29, 161–165.

    CAS  Google Scholar 

  31. Sun, C. Q.; Wang, Y.; Tay, B. K.; Li, S.; Huang, H.; Zhang, Y. B. Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom. J. Phys. Chem. B2002, 106, 10701–10705.

    CAS  Google Scholar 

  32. Phukan, S.; Mahanta, A.; Rashid, M. H. Size-tunable ZnO nanotapes as an efficient catalyst for oxidative chemoselective CB bond cleavage of arylboronic acids. Appl. Catal. A2018, 562, 58–66.

    CAS  Google Scholar 

  33. Liu, J.; Wang, Y.; Ma, J.; Peng, Y.; Wang, A. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. J. Alloys. Compd.2018, 783, 898–918.

    Google Scholar 

  34. Adawi, H. I.; Newbold, M. A.; Reed, J. M.; Vance, M. E.; Feitshans, I.; Bickford, L. R.; Lewinski, N. A. Nano-enabled personal care products: current developments in consumer safety. Nanolmpact2018, 11, 170–179.

    Google Scholar 

  35. Newman, M. D.; Stotland, M.; Ellis, J. I. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J. Am. Acad. Dermatol.2009, 61, 690–692.

    Google Scholar 

  36. Kumar, K.; Shyamlal, B. R. K.; Gupta, A.; Mathur, M.; Swami, A. K.; Chaudhary, S. Efficacious fungicidal potential of composite derived from nano-aggregates of Cu-Diclofenac complexes and ZnO nanoparticles. Compos. Commun.2018, 10, 81–88.

    Google Scholar 

  37. Guo, W.; Xue, X.; Wang, S.; Lin, C.; Wang, Z. L. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett.2012, 12, 2520–2523.

    CAS  PubMed  Google Scholar 

  38. Look, D. C. Recent advances in ZnO materials and devices. Mater. Sci. Eng. B2001, 80, 383–387.

    Google Scholar 

  39. Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M.; Doğan, S.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys.2005, 98, 41301–41310.

    Google Scholar 

  40. Wang, L.; Zheng, Y.; Li, X.; Dong, W.; Tang, W.; Chen, B.; Xu, W. Nanostructured porous ZnO film with enhanced photocatalytic activity. Thin Solid Films2011, 519, 5673–5678.

    CAS  Google Scholar 

  41. Zhang, L.; Jian, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. NanoparticleRes.2007, 9, 479–489.

    Google Scholar 

  42. Janaki, A. C.; Sailatha, E.; Gunasekaran, S. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim. Acta Part A2015, 144, 17–22.

    CAS  Google Scholar 

  43. Yang, X. J.; Shi, C. S.; Xu, X. L. Studies and development of nano-ZnO. J. Inorg. Polym. Mater.2003, 18, 1–10.

    Google Scholar 

  44. Tarani, E.; Terzopoulou, Z.; Bikiaris, D. N.; Kyratsi, T.; Chrissafis, K.; Vourlias, G. Thermal conductivity and degradation behavior of HDPE/graphene nanocomposites. J. Therm. Anal. Calorim.2017, 129, 1715–1726.

    CAS  Google Scholar 

  45. Mwafy, E. A.; Abd-Elmgeed, A. A.; Kandil, A. A.; Elsabbagh, I. A.; Elfass, M. M.; Gaafar, M. S. High UV-shielding performance of zinc oxide/high-density polyethylene nanocomposites. Spectrosc. Lett.2015, 48, 646–652.

    CAS  Google Scholar 

  46. Tang, W.; Santare, M. H.; Advani, S. G. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon2003, 41, 2779–2785.

    CAS  Google Scholar 

  47. Li, S. C.; Li, Y. N. Mechanical and antibacterial properties of modified nano-ZnO/high-density polyethylene composite films with a low doped content of nano-ZnO. J. Appl. Polym. Sci.2010, 116, 2965–2969.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the following organizations: Wuliangye Group Co., Ltd. (No. CXY2019ZR001); Sichuan Province Science and Technology Support Program (No. 2019JDRC0029); Zigong City Science and Technology (Nos. 2017XC16 and 2019CXRC01); Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province (Nos. 2016CL10, 2017CL03, 2019CL05, 2018CL08, and 2018CL07); Opening Project of Sichuan Province, the Foundation of Introduced Talent of Sichuan University of Science and Engineering (Nos. 2014RC31, 2017RCL31, 2017RCL36, 2017RCL16, 2019RC05, and 2019RC07). Appreciation is also extended to Apex Nanotek Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Hui Tsou.

Electronic Supplementary Material

10118_2020_2392_MOESM1_ESM.pdf

Infusing high-density polyethylene with graphene-zinc oxide to produce antibacterial nanocomposites with improved properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, YL., De Guzman, M.R., Duan, H. et al. Infusing High-density Polyethylene with Graphene-Zinc Oxide to Produce Antibacterial Nanocomposites with Improved Properties. Chin J Polym Sci 38, 898–907 (2020). https://doi.org/10.1007/s10118-020-2392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2392-z

Keywords

Navigation