Skip to main content
Log in

Enhanced mechanical, thermal performance and kinetics of thermal degradation of silicone rubber/ethylene–vinyl acetate copolymer/halloysite nanoclay nanocomposites compatibilized by ethylene–acrylic acid copolymer

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this investigation, ethylene–acrylic acid copolymer (EAA) was applied to compatibilize silicone rubber (SR) and ethylene–vinyl acetate copolymer (EVM) blend. The halloysite nanoparticles reinforced SR/EVM/EAA compatibilized nanocomposites were successfully prepared. The halloysite nanoparticles (HNP) were surface modified with 3-(triethoxysilyl) propyl methacrylate (KH570) to increase surface interaction of HNP with SR/EVM/EAA matrix. Pristine and silane-modified nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The tensile strength, elongation at break, modulus at 300%, tear strength, shore A hardness, and set at break of compatibilized nanocomposites increase by 74%, 70%, 227%, 52.9%, 19.4%, and 264% than that of the SR/EVM blend, respectively. The mechanical properties were also studied at 90 °C for 48 h after the thermal aging of the nanocomposites. Dynamic mechanical analysis reveals storage modulus increase and glass transition temperatures of SR and EVM move closer to one another. The thermal durability of the uHNP/SR/EVM nanocomposites was investigated using nonisothermal TG analysis, and activation energy of decomposition (Eα) was estimated by Kissinger, Flynn–Wall–Ozawa, and Friedman methods. The results show that the thermal stabilities and Eα of nanocomposites loaded with 5 and 20 phr of uHNP are better than that of SR/EVM blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zou Z, An X, Li L et al (2022) Surface modification of waste silicone rubber via alcoholysis reaction and its application in polypropylene toughening. J Polym Res 29:148. https://doi.org/10.1007/s10965-022-03002-9

    Article  CAS  Google Scholar 

  2. PS S, Prasad V, Pahovnik D et al (2022) Study the effect of fumed silica on the mechanical, thermal and tribological properties of silicone rubber nanocomposites. J Polym Res 29:53. https://doi.org/10.1007/s10965-022-02905-x

    Article  CAS  Google Scholar 

  3. Zia-ul-Haq M, Haq ZU, Wu J et al (2023) Mechanical properties, thermal stability, and thermal degradation kinetics of silicone rubber/ethylene-vinyl acetate copolymer/magnesium sulfate whisker composites compatibilized by ethylene-acrylic acid copolymer. J Appl Polym Sci 140:e53404. https://doi.org/10.1002/app.53404

    Article  CAS  Google Scholar 

  4. Tan Y, Wachtendorf V, Klack P et al (2020) Durability of the flame retardance of ethylene-vinyl acetate copolymer cables: Comparing different flame retardants exposed to different weathering conditions. J Appl Polym Sci 137:1–16. https://doi.org/10.1002/app.47548

    Article  CAS  Google Scholar 

  5. Jolfaei AF, Gavgani JN, Jalali A, Goharpey F (2015) Effect of organoclay and compatibilizers on microstructure, rheological and mechanical properties of dynamically vulcanized EPDM/PP elastomers. Polym Bull 72:1127–1144. https://doi.org/10.1007/s00289-015-1328-1

    Article  CAS  Google Scholar 

  6. Zygo M, Lipinska M, Lu Z et al (2019) New type of montmorillonite compatibilizers and their influence on viscoelastic properties of ethylene propylene diene and methyl vinyl silicone rubbers blends. Appl Clay Sci 183:105359. https://doi.org/10.1016/j.clay.2019.105359

    Article  CAS  Google Scholar 

  7. Zhang W, Yan W, Pan R, Guo W, Wu G (2018) Synthesis of silane-grafted ethylene vinyl acetae copolymer and its application to compatibilize the blend of ethylene-propylene-diene copolymer and silicone rubber. Polym Eng Sci 58:719–728. https://doi.org/10.1002/pen

    Article  CAS  Google Scholar 

  8. Eesaee M, David E, Demarquette NR (2020) Dielectric relaxation dynamics of clay-containing low-density polyethylene blends and nanocomposites. Polym Eng Sci 60:968–978. https://doi.org/10.1002/pen.25352

    Article  CAS  Google Scholar 

  9. Khanra S, Sreenivasan P, Das S et al (2022) Immobilization of a biobased process aid at the interface for binary silicone and fluoroelastomer based super specialty blends with silica for enhanced compatibility. J Mater Sci 57:13974–13990. https://doi.org/10.1007/s10853-022-07504-1

    Article  CAS  Google Scholar 

  10. Panmanee P, Okhawilai M, Mora P et al (2023) Development of a new birthing model material based on silicone rubber/natural rubber blend. Polym Test 117:107849. https://doi.org/10.1016/j.polymertesting.2022.107849

    Article  CAS  Google Scholar 

  11. Zhang W, Yan W, Pan R et al (2018) Synthesis of silane-grafted ethylene vinyl acetate copolymer and its application to compatibilize the blend of ethylene-propylene-diene copolymer and silicone rubber. Polym Eng Sci 58:719–728. https://doi.org/10.1002/pen.24604

    Article  CAS  Google Scholar 

  12. Alikhani E, Mohammadi M, Sabzi M (2022) Preparation and study of mechanical and thermal properties of silicone rubber/poly(styrene–ethylene butylene–styrene) triblock copolymer blends. Polym Bull. https://doi.org/10.1007/s00289-022-04440-7

    Article  Google Scholar 

  13. Marinković AD, Vuksanović MM, Karić N et al (2021) The effect of natural modifiers for starch hydrophobization on performance of composite based on ethylene acrylic acid copolymer. Polym Compos 42:1325–1337. https://doi.org/10.1002/pc.25903

    Article  CAS  Google Scholar 

  14. Xie G, Wang L, Zhu Q et al (2022) Modification of SiO2 nanoparticle-decorated TiO2 nanocomposites with silane coupling agents for enhanced opacity in blue light-curable ink. ACS Appl Nano Mater 5:9678–9687. https://doi.org/10.1021/acsanm.2c01910

    Article  CAS  Google Scholar 

  15. Zare Y, Rhee KY (2022) Development of a model for modulus of polymer halloysite nanotube nanocomposites by the interphase zones around dispersed and networked nanotubes. Sci Rep 12:2443. https://doi.org/10.1038/s41598-022-06465-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Høgsaa B, Pedersen TH, Mousavi M et al (2019) Multiscale characterization of a wood-based biocrude as a green compatibilizing agent for high-impact polystyrene/halloysite nanotube nanocomposites. ACS Omega 22:19934–19943. https://doi.org/10.1021/acsomega.9b02871

    Article  CAS  Google Scholar 

  17. Pourmohammadi-Mahunaki M, Haddadi-Asl V, Roghani-Mamaqani H et al (2020) Halloysite-reinforced thermoplastic polyurethane nanocomposites: Physico-mechanical, rheological, and thermal investigations. Polym Compos 17:1–11. https://doi.org/10.1002/pc.25617

    Article  CAS  Google Scholar 

  18. Petková M, Ryba J, Hrabovská V et al (2019) The crystallization of polypropylene/halloysite fibers. J Therm Anal Calorim 136:1093–1101. https://doi.org/10.1007/s10973-018-7703-z

    Article  CAS  Google Scholar 

  19. Sharifzadeh G, Soheilmoghaddam M, Adelnia H (2020) Biocompatible regenerated cellulose/halloysite nanocomposite fibers. Polym Eng Sci 60:1–8. https://doi.org/10.1002/pen.25370

    Article  CAS  Google Scholar 

  20. Bertolino V, Cavallaro G, Milioto S, Lazzara G (2020) Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydr Polym 245:116502. https://doi.org/10.1016/j.carbpol.2020.116502

    Article  CAS  PubMed  Google Scholar 

  21. Cao X, Liu H, Yang X et al (2020) Halloysite nanotubes@polydopamine reinforced polyacrylamide-gelatin hydrogels with NIR light triggered shape memory and self-healing capability. Compos Sci Technol 191:108071. https://doi.org/10.1016/j.compscitech.2020.108071

    Article  CAS  Google Scholar 

  22. Berahman R, Raiati M, Mehrabi M et al (2016) Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites : Effect of matrix hardness and HNT content. Mater Des 104:333–345. https://doi.org/10.1016/j.matdes.2016.04.099

    Article  CAS  Google Scholar 

  23. Ghosh D, Bhandari S, Chaki TK, Khastgir D (2015) Development of a high performance high voltage insulator for power transmission lines from blends of polydimethylsiloxane/ethylene vinyl acetate containing nanosilica. RSC Adv 5:57608–57618. https://doi.org/10.1039/C5RA08277C

    Article  CAS  Google Scholar 

  24. Prashantha K, Lacrampe MF, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route : effect of halloysites treatment on structural and mechanical properties. Express Polym Lett 5:295–307. https://doi.org/10.3144/expresspolymlett.2011.30

    Article  CAS  Google Scholar 

  25. Uo BG, Ou ÃQZ, Ei YL, Ia DJ (2009) Structure and performance of polyamide 6/halloysite nanotubes nanocomposites. Polym J 41:835–842. https://doi.org/10.1295/polymj.PJ2009110

    Article  CAS  Google Scholar 

  26. Lopes Alves J, de Tarso Vieira e Rosa P, de Redondo Realinho VC et al (2021) Single and hybrid organoclay-filled PLA nanocomposites: Mechanical properties, viscoelastic behavior and fracture toughening mechanism. J Appl Polym Sci 138:50784. https://doi.org/10.1002/app.50784

    Article  CAS  Google Scholar 

  27. Krishnaiah P, Thevy C, Manickam S (2017) Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Appl Clay Sci 135:583–595. https://doi.org/10.1016/j.clay.2016.10.046

    Article  CAS  Google Scholar 

  28. Bazli L, Khavandi A, Boutorabi MA, Karrabi M (2017) Correlation between viscoelastic behavior and morphology of nanocomposites based on SR/EPDM blends compatibilized by maleic anhydride. Polym 113:156–166. https://doi.org/10.1016/j.polymer.2017.02.057

    Article  CAS  Google Scholar 

  29. Bazli L, Khavandi A, Ali M, Karrabi M (2016) Morphology and viscoelastic behavior of silicone rubber/EPDM/Cloisite 15A nanocomposites based on Maxwell model. Iran Polym J 25:907–918. https://doi.org/10.1007/s13726-016-0477-x

    Article  CAS  Google Scholar 

  30. Krishnamurthy S, Balakrishnan P (2019) Dynamic mechanical behavior, solvent resistance and thermal degradation of nitrile rubber composites with carbon black-halloysite nanotube hybrid fillers. Polym Compos 40:1612–1621. https://doi.org/10.1002/pc.25101

    Article  CAS  Google Scholar 

  31. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate ž clay/nanocomposites. Appl Clay Sci 15:31–49

    Article  CAS  Google Scholar 

  32. Cheraghi H, Hossein B, Heider R, Soheilmoghaddam M (2015) Preparation and characterization of ethylene-vinyl acetate /halloysite nanotube nanocomposites. J Mater Sci 50:3237–3245. https://doi.org/10.1007/s10853-015-8891-6

    Article  CAS  Google Scholar 

  33. Xue MY, Lu YH, Li K et al (2020) Thermal characterization and kinetic analysis of polyvinyl chloride containing Sn and Zn. J Therm Anal Calorim 139:1479–1492. https://doi.org/10.1007/s10973-019-08505-0

    Article  CAS  Google Scholar 

  34. Zhu H, Liu N (2020) Kinetic analysis based on the kinetic compensation effect and optimization calculation. Thermochim Acta 690:178686. https://doi.org/10.1016/j.tca.2020.178686

    Article  CAS  Google Scholar 

  35. Patwa R, Singh M, Kumar A, Katiyar V (2019) Kinetic modelling of thermal degradation and non-isothermal crystallization of silk nano-discs reinforced poly (lactic acid) bionanocomposites. Polym Bull 76:1349–1382. https://doi.org/10.1007/s00289-018-2434-7

    Article  CAS  Google Scholar 

  36. Leszczyńska A, Radzik P, Haraźna K, Pielichowski K (2018) Thermal stability of cellulose nanocrystals prepared by succinic anhydride assisted hydrolysis. Thermochim Acta 663:145–156. https://doi.org/10.1016/j.tca.2018.03.015

    Article  CAS  Google Scholar 

  37. Chen Y, Wang Q (2007) Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym Degrad Stab 92:280–291. https://doi.org/10.1016/j.polymdegradstab.2006.11.004

    Article  CAS  Google Scholar 

  38. Devnani GL, Sinha S (2019) Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated Saccharum spontaneum (Kans grass) fiber. Compos Part B Eng 166:436–445. https://doi.org/10.1016/j.compositesb.2019.02.042

    Article  CAS  Google Scholar 

  39. Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784. https://doi.org/10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-GAQ

    Article  CAS  Google Scholar 

  40. Banerjee J, Parija S, Panwar AS et al (2017) Isothermal crystallization kinetics of polypropylene in melt-mixed composites of polypropylene and multi-walled carbon nanotubes. Polym Degrad Stab 57:1–11. https://doi.org/10.1002/pen.24491

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (No. 51273109). The authors also thank the Instrumental Analysis Center of Shanghai Jiao Tong University staff for the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9052 KB)

Supplementary file2 (DOCX 325 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zia-ul-Haq, M., Wu, J., Haq, Z.U. et al. Enhanced mechanical, thermal performance and kinetics of thermal degradation of silicone rubber/ethylene–vinyl acetate copolymer/halloysite nanoclay nanocomposites compatibilized by ethylene–acrylic acid copolymer. J Polym Res 30, 306 (2023). https://doi.org/10.1007/s10965-023-03688-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03688-5

Keywords

Navigation