Skip to main content
Log in

Highly effective flame retarded TPU introduced by a new phosphorus-containing Schiff base derivative at low addition

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Flame retardant thermoplastic polyurethane elastomer (TPU) applied in the field of wires and cables often need a large amount of flame retardant additive. To improve the efficiency, this work prepared a highly effective novel phosphorus-containing Schiff base derivative flame retardant N, N′-bis[1-(salicylidene) methanephenylphosphonic acid]-1,2- ethylene diamine (SMAE), which was successfully synthesized via the addition reaction between Phenylphosphinic acid and N, N'-bis(salicylidene)ethylenediamine. It had great thermal stability (T5%, 271 ℃) and char forming ability (29.6 wt. % at 700 °C), which was added to TPU at different additions to improve the flame retardant performance. Results showed that only 4% SMAE increased the limiting oxygen index value of TPU from 22.3% to 32%, passing UL 94 V-0 rating. Meanwhile, the peak heat release rate, average heat release rate and total heat release of TPU also decreased by 3%, 19% and 16%, respectively. The constituent and microscopic morphology of the residual char of TPU samples were observed by Fourier transform infrared spectroscopy and scanning electron microscopy, which indicated SMAE produced phosphinic acid to promote the formation of a more complete and dense char layer for TPU. The pyrolysis gas phase products were recorded by thermogravimetric Fourier transform infrared spectroscopy. The results showed that SMAE could produced PO∙ terminated the chain reaction and released inert gases (carbon dioxide and ammonia) to dilute combustible gases during combustion. Therefore, SMAE can endow TPU with excellent flame retardancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study is available from the corresponding authors on request.

References

  1. Khalifa M, Anandhan S, Wuzella G, Lammer H, Mahendran AR (2020) Thermoplastic polyurethane composites reinforced with renewable and sustainable fillers – a review. Polym-Plast Tech Mat 59:1751–1769

    CAS  Google Scholar 

  2. Bikas H, Stavropoulos P, Chryssolouris G (2015) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83:389–405

    Article  Google Scholar 

  3. Valino AD, Dizon JRC, Espera AH, Chen Q, Messman J, Advincula RC (2019) Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym Sci 98:101162

    Article  CAS  Google Scholar 

  4. Wan L, Deng C, Chen H, Zhao ZY, Huang SC, Wei WC, Yang AH, Zhao HB, Wang YZ (2021) Flame-retarded thermoplastic polyurethane elastomer: From organic materials to nanocomposites and new prospects. Chem Eng J 417:129314

    Article  CAS  Google Scholar 

  5. Bi X, Di H, Liu J, Meng YF, Song YY, Meng WH, Qu HQ, Fang LD, Song PA, Xu JZ (2022) A core–shell-structured APP@COFs hybrid for enhanced flame retardancy and mechanical property of epoxy resin (EP). Adv Compos Hybrid Ma 5:1743–1755

    Article  CAS  Google Scholar 

  6. Chen T, Chen XM, Wang MJ, Hou PX, Jie C, Li JL, Xu YT, Zeng BR, Dai LZ (2018) A novel halogen-free co-curing agent with linear multi-aromatic rigid structure as flame-retardant modifier in epoxy resin. Polym Adv Technol 29:603–611

    Article  CAS  Google Scholar 

  7. Cui JF, Zhang YB, Wang LR, Liu H, Wang NN, Yang BP, Guo JH, Tian L (2020) Phosphorus-containing Salen-Ni metal complexes enhancing the flame retardancy and smoke suppression of epoxy resin composites. J Appl Polym Sci 137:48734

    Article  CAS  Google Scholar 

  8. Li JH, Weng ZH, Cao Q, Qi Y, Lu BW, Zhang SH, Wang JY, Jian XG (2022) Synthesis of an aromatic amine derived from biomass and its use as a feedstock for versatile epoxy thermoset. Chem Eng J 433:134512

    Article  CAS  Google Scholar 

  9. Niu HX, Nabipour H, Wang X, Song L, Hu Y (2021) Phosphorus-free vanillin-derived intrinsically flame-retardant epoxy thermoset with extremely low heat release rate and smoke emission. Acs Sustain Chem Eng 9:5268–5277

    Article  CAS  Google Scholar 

  10. Wan C, Duan HJ, Zhang CH, Cao JF, Zou JH, Zhang JJ, Ma HR (2021) A P/N/S-containing compound toward enhanced fire safety epoxy resin with well-balanced performance. Polym Degrad Stab 192:109698

    Article  CAS  Google Scholar 

  11. Xie WQ, Huang SW, Liu SM, Zhao JQ (2019) A biobased Schiff base from protocatechualdehyde and its application in flame-retardant, low-smoke epoxy resin systems. RSC Adv 9:30815–30822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xie WQ, Huang SW, Tang DL, Liu SM, Zhao JQ (2020) Biomass-derived Schiff base compound enabled fire-safe epoxy thermoset with excellent mechanical properties and high glass transition temperature. Chem Eng J 394:123667

    Article  CAS  Google Scholar 

  13. Chen L, Zhao D, Wang XL, Wang YZ (2022) Durable macromolecular firefighting for unsaturated polyester via integrating synergistic charring and hydrogen bond. Chem Eng J 443:136365

    Article  CAS  Google Scholar 

  14. Li Z, Fu T, Lu JH, He JH, Li WD, Liu BW, Chen L, Wang YZ (2022) Ultra-high fire-safety unsaturated polyesters enabled by self-assembled micro/nano rod from Schiff base, diphenylphosphinyl group and nickel (II) metal. Compos Part B-Eng 242:110032

    Article  CAS  Google Scholar 

  15. Zhao D, Wang J, Wang XL, Wang YZ (2018) Highly thermostable and durably flame-retardant unsaturated polyester modified by a novel polymeric flame retardant containing Schiff base and spirocyclic structures. Chem Eng J 344:419–430

    Article  CAS  Google Scholar 

  16. Wu JN, Chen L, Fu T, Zhao HB, Guo DM, Wang XL, Wang YZ (2018) New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters. Chem Eng J 336:622–632

    Article  CAS  Google Scholar 

  17. Zhang XX, Wang QY, Liu SY, Zhang LL, Wang GY (2021) Improved processability and optimized preparing process for fire-safe poly (ethylene terephthalate) by electron effect modified Schiff base. J Appl Polym Sci 138:50444

    Article  CAS  Google Scholar 

  18. Zhang XX, Wang QY, Liu SY, Zhang LL, Wang GY (2021) Synthesis and characterization of fire-safety PET by Schiff base with nitro group. Eur Polym J 145:110230

    Article  CAS  Google Scholar 

  19. Fan S, Peng B, Yuan RC, Wu DQ, Wang XL, Yu JY, Li FX (2020) A novel Schiff base-containing branched polysiloxane as a self-crosslinking flame retardant for PA6 with low heat release and excellent anti-dripping performance. Compos Part B-Eng 183:107684

    Article  CAS  Google Scholar 

  20. Fan S, Sun YL, Wang XL, Yu JY, Wu DQ, Li FX (2020) A novel organic-inorganic flame retardant of ammonium polyphosphate chemically coated by Schiff base-containing branched polysiloxane for polyamide 6. Polym Adv Technol 31:2763–2774

    Article  CAS  Google Scholar 

  21. He FM, Liu BW, Chen L, Guo DM, Ding XM, Xiao YF, Zhao HB, Li WD, Wang YZ (2021) Novel polyamide 6 composites based on Schiff-base containing phosphonate oligomer: High flame retardancy, great processability and mechanical property. Compos Part A Appl Sci Manuf 146:106423

    Article  CAS  Google Scholar 

  22. Liang T, Cai J, Liu S, Lai H, Zhao J (2019) Chain extension and synergistic flame-retardant effect of aromatic schiff base diepoxide on polyamide 6/aluminum diethylphosphinate Composites. Materials (Basel) 12:2217

    Article  CAS  PubMed  Google Scholar 

  23. Naik AD, Fontaine G, Bellayer S, Bourbigot S (2015) Crossing the traditional boundaries: Salen-based Schiff bases for thermal protective applications. ACS Appl Mater Interfaces 7:21208–21217

    Article  CAS  PubMed  Google Scholar 

  24. Naik AD, Fontaine G, Bellayer S, Bourbigot S (2015) Salen based Schiff bases to flame retard thermoplastic polyurethane mimicking operational strategies of thermosetting resin†. RSC Adv 5:48224–48235

    Article  CAS  Google Scholar 

  25. Naik AD, Bourbigot S, Bellayer S, Touati N, Ben Tayeb K, Vezin H, Fontaine G (2018) Salen complexes as fire protective agents for thermoplastic polyurethane: Deep electron paramagnetic resonance spectroscopy investigation. ACS Appl Mater Interfaces 10:24860–24875

    Article  CAS  PubMed  Google Scholar 

  26. Ramgobin A, Fontaine G, Penverne C, Bourbigot S (2017) Thermal stability and fire properties of salen and metallosalens as fire retardants in thermoplastic polyurethane (TPU). Materials 10:665

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu XD, Gu XY, Sun J, Zhang S (2017) Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane. Carbohydr Polym 167:356–363

    Article  CAS  PubMed  Google Scholar 

  28. Shi YQ, Fu LB, Chen XL, Guo J, Yang FQ, Wang JG, Zheng YY, Hu Y (2017) hypophosphite/graphitic carbon nitride hybrids: Preparation and flame-retardant application in thermoplastic polyurethane. Nanomaterials 7:259

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu XD, Guo J, Tang WF, Li HF, Gu XY, Sun J, Zhang S (2019) Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan. Compos Part A Appl Sci Manuf 119:291–298

    Article  CAS  Google Scholar 

  30. Tang G, Zhou L, Zhang P, Han ZQ, Chen DP, Liu XY, Zhou ZJ (2019) Effect of aluminum diethylphosphinate on flame retardant and thermal properties of rigid polyurethane foam composites. J Therm Anal Calorim 140:625–636

    Article  Google Scholar 

  31. Li H, Ning N, Zhang L, Wang Y, Liang W, Tian M (2014) Different flame retardancy effects and mechanisms of aluminium phosphinate in PPO, TPU and pp. Polym Degrad Stab 105:86–95

    Article  CAS  Google Scholar 

  32. Chen WH, Liu PJ, Cheng YB, Liu Y, Wang Q, Duan WF (2019) Flame retardancy mechanisms of melamine cyanurate in combination with aluminum diethylphosphinate in epoxy resin. J Appl Polym Sci 136:47223

    Article  Google Scholar 

  33. Lorenzetti A, Besco S, Hrelja D, Roso M, Gallo E, Schartel B, Modesti M (2013) Phosphinates and layered silicates in charring polymers: The flame retardancy action in polyurethane foams. Polym Degrad Stab 98:2366–2374

    Article  CAS  Google Scholar 

  34. Tomiak F, Schartel B, Wolf M, Drummer D (2020) Particle size related effects of multi-component flame-retardant systems in poly(butadiene terephthalate). Polymers-Basel 12:1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sut A, Metzsch-Zilligen E, Großhauser M, Pfaendner R, Schartel B (2019) Synergy between melamine cyanurate, melamine polyphosphate and aluminum diethylphosphinate in flame retarded thermoplastic polyurethane. Polym Test 74:196–204

    Article  CAS  Google Scholar 

  36. Li D, Liu L, Zhang Z, Xu M, Xu Y, Qian L (2021) An urethane-based phosphonate ester for improving flame retardancy and smoke suppression of thermoplastic polyurethane. Polym Degrad Stab 188

  37. Chen H, Deng C, Zhao Z-Y, Wan L, Yang A-H, Wang Y-Z (2020) Novel piperazine-containing oligomer as flame retardant and crystallization induction additive for thermoplastics polyurethane. Chem Eng J 400:125941

    Article  CAS  Google Scholar 

  38. Wang XG, Sun J, Liu XD, Jiang SL, Wang JL, Li HF, Bourbigot S, Gu XY, Zhang S (2019) An effective flame retardant containing hypophosphorous acid for poly (lactic acid): Fire performance, thermal stability and mechanical properties. Polym Test 78:105940

    Article  Google Scholar 

  39. Tao W, Li J (2018) Melamine cyanurate tailored by base and its multi effects on flame retardancy of polyamide 6. Appl Surf Sci 456:751–762

    Article  CAS  Google Scholar 

  40. Wang H, Qiao H, Guo J, Sun J, Li H, Zhang S, Gu X (2020) Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU). Compos Part B-Eng 182:107498

    Article  CAS  Google Scholar 

  41. Chen H, Deng C, Zhao Z-Y, Huang S-C, Wei Y-X, Wang Y-Z (2020) Novel alkynyl-containing phosphonate ester oligomer with high charring capability as flame retardant additive for thermoplastic polyurethane. Compos Part B-Eng 199:108315

    Article  CAS  Google Scholar 

  42. Chen KX, Yang D, Shi YQ, Feng Y, Fu LB, Liu C, Chen M, Yang FQ (2021) Synergistic function of N-P-Cu containing supermolecular assembly networks in intumescent flame retardant thermoplastic polyurethane. Polym Adv Technol 32:4450–4463

    Article  CAS  Google Scholar 

  43. Chen XL, Chen XH, Li SX, Jiao CM (2021) Copper metal-organic framework toward flame-retardant enhancement of thermoplastic polyurethane elastomer composites based on ammonium polyphosphate. Polym Adv Technol 32:2829–2842

    Article  CAS  Google Scholar 

  44. Chen XL, Wang K, Li SX, Jiao CM (2021) Effects of flame retardants integrated with citrate and ammonium polyphosphate on thermal stability and flame retardancy of thermoplastic polyurethane elastomer. Polym Adv Technol 32:2866–2878

    Article  CAS  Google Scholar 

  45. Ji XY, Chen DY, Wang QW, Shen JB, Guo SY (2018) Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane. Compos Sci Technol 163:49–55

    Article  CAS  Google Scholar 

  46. Savas LA, Hacioglu F, Hancer M, Dogan M (2020) Flame retardant effect of aluminum hypophosphite in heteroatom-containing polymers. Polym Bull (Berlin) 77:291–306

    Article  CAS  Google Scholar 

  47. Singh KP, Mishra A, Kumar N, Tripathi DN, Shami TC (2018) Evaluation of thermal, morphological and flame-retardant properties of thermoplastic polyurethane/polyphosphazene blends. Polym Bull (Berlin) 75:2415–2430

    Article  CAS  Google Scholar 

  48. Wang D, Guo J, Su M, Sun J, Zhang S, Yang WT, Gu XY, Li HF (2020) The application of a novel char source from petroleum refining waste in flame retardant thermoplastic polyurethane. Polym Eng Sci 60:1029–1034

    Article  CAS  Google Scholar 

  49. Wang SW, Shi MN, Yang WM, Yan H, Zhang C, An Y, Zhang FH (2021) Experimental investigation of flame retardancy and mechanical properties of APP/EG/TPU multilayer composites prepared by microlayer coextrusion technology. J Appl Polym Sci 138:50219

    Article  CAS  Google Scholar 

  50. Wang WD, Chen XL, Gu YX, Jiao CM (2018) Synergistic fire safety effect between nano-CuO and ammonium polyphosphate in thermoplastic polyurethane elastomer. J Therm Anal Calorim 131:3175–3183

    Article  CAS  Google Scholar 

  51. Wei ZB, Chen XL, Jiao CM, Ma ML (2021) Research on the fire safety effect of thermoplastic polyurethane elastomer based on sodium fumarate. Polym Adv Technol 32:3795–3803

    Article  CAS  Google Scholar 

  52. Xu WZ, Cheng ZH, Zhong D, Qin ZQ, Zhou N, Li W (2021) Effect of two-dimensional zeolitic imidazolate frameworks-L on flame retardant property of thermoplastic polyurethane elastomers. Polym Adv Technol 32:2072–2081

    Article  CAS  Google Scholar 

  53. Chen X, Wang J, Huo SQ, Yang S, Zhang B, Cai HP (2019) Preparation of flame-retardant cyanate ester with low dielectric constants and dissipation factors modified with novel phosphorus-contained Schiff base. J Therm Anal Calorim 135:3153–3164

    Article  CAS  Google Scholar 

  54. Gallo E, Schartel B, Acierno D, Cimino F, Russo P (2013) Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate. Compos Part B-Eng 44:112–119

    Article  CAS  Google Scholar 

  55. Brehme S, Schartel B, Goebbels J, Fischer O, Pospiech D, Bykov Y, Döring M (2011) Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate) (PBT): Flame retardancy performance and mechanisms. Polym Degrad Stab 96:875–884

    Article  CAS  Google Scholar 

  56. Wang J, Qian L, Xu B, Xi W, Liu X (2015) Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant application in epoxy resin. Polym Degrad Stab 122:8–17

    Article  CAS  Google Scholar 

  57. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133

    Article  CAS  Google Scholar 

  58. Tabuani D, Bellucci F, Terenzi A, Camino G (2012) Flame retarded thermoplastic polyurethane (TPU) for cable jacketing application. Polym Degrad Stab 97:2594–2601

    Article  CAS  Google Scholar 

  59. Hao F, Chen Y, Sun Z, Qian L (2022) Component ratio effects of melamine cyanurate and aluminum diethylphosphinate in flame retardant TPU. J Polym Res 30:25

    Article  Google Scholar 

  60. Yang A-H, Deng C, Chen H, Wei Y-X, Wang Y-Z (2017) A novel Schiff-base polyphosphate ester: Highly-efficient flame retardant for polyurethane elastomer. Polym Degrad Stab 144:70–82

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work financial support was provided by the National Natural Science Foundations of China (No. 22175006) and the 2023 College Student Science Research and Entrepreneurship Action Plan Project (No. G032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajun Chen or Jing Hu.

Ethics declarations

Competing interest

As far as this manuscript is concerned, the authors have no competing financial interest or personal relationship that could have influenced this work was published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7489 KB)

Supplementary file2 (DOCX 2252 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, F., Zhang, J., Xu, X. et al. Highly effective flame retarded TPU introduced by a new phosphorus-containing Schiff base derivative at low addition. J Polym Res 30, 313 (2023). https://doi.org/10.1007/s10965-023-03686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03686-7

Keywords

Navigation