Skip to main content

Advertisement

Log in

Component ratio effects of melamine cyanurate and aluminum diethylphosphinate in flame retardant TPU

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Melamine cyanurate (MCA) and aluminum diethylphosphinate (ADP) were added to thermoplastic polyurethane elastomer (TPU) in different ratios and additions to prepare flame retardant TPU materials, and their mechanical and combustion properties were systematically investigated. Firstly, the effects of MCA/ADP on the flame retardancy of TPU were investigated by using limiting oxygen index (LOI), vertical burning (UL 94) tests and cone calorimeter test (CCT). The experimental results showed that when the total addition of flame retardant was at 15% and the mass ratio of MCA/ADP was 1/1, the LOI value of TPU can reach 27.4% and pass the UL 94 V-0 rating, and the peak heat release rate was 22% lower than that of pure TPU. Secondly, it was found that the mechanical properties of TPU were minimally affected by the addition of MCA/ADP, and the tensile strength could basically be maintained at about 40 MPa and elongation at break at about 530% at the addition amount of 15%. The microscopic morphology of the residual char of TPU materials were analyzed by scanning electron microscopy (SEM) and the gas-phase pyrolysis products were studied by thermogravimetric Fourier infrared spectroscopy (TG-IR). It was found that the addition of ADP promoted the decomposition of TPU in advance to produce a dense char layer and thus protected the matrix material, while MCA mainly decomposed to produce inert gases such as NH3 to dilute combustible gases. Therefore, the constructed MCA/ADP synergistic flame retardant system exerts excellent flame retardant effect on TPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study is available from the corresponding authors on request.

References

  1. Khalifa M, Anandhan S, Wuzella G, Lammer H, Mahendran AR (2020) Thermoplastic polyurethane composites reinforced with renewable and sustainable fillers – a review. Polym-Plast Tech Mat 59:1751–1769

    CAS  Google Scholar 

  2. Wan L, Deng C, Chen H, Zhao Z-Y, Huang S-C, Wei W-C, Yang A-H, Zhao H-B, Wang Y-Z (2021) Flame-retarded thermoplastic polyurethane elastomer: From organic materials to nanocomposites and new prospects. Chem Eng J 417:129314

    Article  CAS  Google Scholar 

  3. Sut A, Metzsch-Zilligen E, Großhauser M, Pfaendner R, Schartel B (2018) Rapid mass calorimeter as a high-throughput screening method for the development of flame-retarded TPU. Polym Degrad Stab 156:43–58

    Article  CAS  Google Scholar 

  4. Xie M, Jia D, Hu J, He J, Li X, Yang R (2021) Fabrication of enhanced mechanical properties and intrinsic flame-retardant polyurethane elastomer containing 4-(phenylethynyl) di(ethylene glycol) phthalate. Polymers (Basel) 13:2388

    Article  CAS  Google Scholar 

  5. Liu L, Xu Y, He Y, Xu M, Shi Z, Hu H, Yang Z, Li B (2019) An effective mono-component intumescent flame retardant for the enhancement of water resistance and fire safety of thermoplastic polyurethane composites. Polym Degrad Stab 167:146–156

    Article  CAS  Google Scholar 

  6. Zhang Y, Cui J, Wang L, Liu H, Yang B, Guo J, Mu B, Tian L (2020) Phosphorus-containing Salen-metal complexes investigated for enhancing the fire safety of thermoplastic polyurethane (TPU). Polym Adv Technol 31:1150–1163

    Article  CAS  Google Scholar 

  7. Chen X, Wei Z, Wang W, Jiao C (2019) Properties of flame-retardant TPU based on para-aramid fiber modified with iron diethyl phosphinate. Polym Adv Technol 30:170–178

    Article  CAS  Google Scholar 

  8. Jiao C, Zhang Y, Li S, Chen X (2020) Flame retardant effect of 1-aminoethyl-3-methylimidazolium hexafluorophosphate in thermoplastic polyurethane elastomer. J Therm Anal Calorim 145:173–184

    Article  Google Scholar 

  9. Yang A-H, Deng C, Chen H, Wei Y-X, Wang Y-Z (2017) A novel Schiff-base polyphosphate ester: Highly-efficient flame retardant for polyurethane elastomer. Polym Degrad Stab 144:70–82

    Article  CAS  Google Scholar 

  10. Shi Y, Liu C, Duan Z, Yu B, Liu M, Song P (2020) Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem Eng J 399:125829

    Article  CAS  Google Scholar 

  11. Liu L, Xu Y, Li S, Xu M, He Y, Shi Z, Li B (2019) A novel strategy for simultaneously improving the fire safety, water resistance and compatibility of thermoplastic polyurethane composites through the construction of biomimetic hydrophobic structure of intumescent flame retardant synergistic system. Compos Part B-Eng 176:107218

    Article  CAS  Google Scholar 

  12. Xu W, Cheng C, Qin Z, Zhong D, Cheng Z, Zhang Q (2020) Improvement of thermoplastic polyurethane’s flame retardancy and thermal conductivity by leaf-shaped cobalt-zeolitic imidazolate framework –modified graphene and intumescent flame retardant. Polym Adv Technol 32:228–240

    Article  Google Scholar 

  13. Chen X, Zhang X, Kuang S, Jiao C, Li S (2020) Superior fire safety performances of chelates copper(II) salicylaldehyde complexes with intumescent flame retardant TPU. Polym Adv Technol 31:2884–2895

    Article  CAS  Google Scholar 

  14. Zhou Q, Liu C, Zhou K, Xuan X, Shi C (2019) Synergistic effect between solid wastes and intumescent flame retardant on flammability and smoke suppression of thermoplastic polyurethane composites. Polym Adv Technol 31:4–14

    Article  Google Scholar 

  15. Lin M, Li B, Li Q, Li S, Zhang S (2011) Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. J Appl Polym Sci 121:1951–1960

    Article  CAS  Google Scholar 

  16. Chen X, Wang Y, Jiao C (2017) Influence of TiO2 particles and APP on combustion behavior and mechanical properties of flame-retardant thermoplastic polyurethane. J Therm Anal Calorim 132:251–261

    Article  Google Scholar 

  17. Huang S-C, Deng C, Wang S-X, Wei W-C, Chen H, Wang Y-Z (2019) Electrostatic action induced interfacial accumulation of layered double hydroxides towards highly efficient flame retardance and mechanical enhancement of thermoplastic polyurethane/ammonium polyphosphate. Polym Degrad Stab 165:126–136

    Article  CAS  Google Scholar 

  18. Chen C, Zhao X, Shi C, Chen J (2018) Synergistic effect between carbon nanoparticle and intumescent flame retardant on flammability and smoke suppression of copolymer thermoplastic polyurethane. J Mater Sci 53:6053–6064

    Article  CAS  Google Scholar 

  19. Zhou Q, Gong K, Zhou K, Zhao S, Shi C (2019) Synergistic effect between phosphorus tailings and aluminum hypophosphite in flame-retardant thermoplastic polyurethane composites. Polym Adv Technol 30:2480–2487

    Article  CAS  Google Scholar 

  20. Liu X, Guo J, Tang W, Li H, Gu X, Sun J, Zhang S (2019) Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan. Compos Part A-Appl S 119:291–298

    Article  CAS  Google Scholar 

  21. Cai W, Mu X, Pan Y, Guo W, Wang J, Yuan B, Feng X, Tai Q, Hu Y (2018) Facile fabrication of organically modified boron nitride nanosheets and its effect on the thermal stability, flame retardant, and mechanical properties of thermoplastic polyurethane. Polym Adv Technol 29:2545–2552

    Article  CAS  Google Scholar 

  22. Bashir A, Maqbool M, Lv R, Usman A, Guo H, Aftab W, Niu H, Liu M, Bai S-L (2021) Surface modified boron nitride towards enhanced thermal and mechanical performance of thermoplastic polyurethane composite. Compos Part B-Eng 218:108871

    Article  CAS  Google Scholar 

  23. Li L, Jiang K, Qian Y, Han H, Qiao P, Zhang H (2020) Effect of organically intercalation modified layered double hydroxides-graphene oxide hybrids on flame retardancy of thermoplastic polyurethane nanocomposites. J Therm Anal Calorim 142:723–733

    Article  CAS  Google Scholar 

  24. Yu B, Tawiah B, Wang LQ, Yin Yuen AC, Zhang ZC, Shen LL, Lin B, Fei B, Yang W, Li A, Zhu SE, Hu EZ, Lu HD, Yeoh GH (2019) Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J Hazard Mater 374:110–119

    Article  CAS  Google Scholar 

  25. Kanbur Y, Tayfun U (2017) Investigating mechanical, thermal, and flammability properties of thermoplastic polyurethane/carbon nanotube composites. J Thermoplast Compos Mater 31:1661–1675

    Article  Google Scholar 

  26. Mu X, Zhan J, Feng X, Yuan B, Qiu S, Song L, Hu Y (2017) Novel melamine/o-phthalaldehyde covalent organic frameworks nanosheets: enhancement flame retardant and mechanical performances of thermoplastic polyurethanes. ACS Appl Mater Inter 9:23017–23026

    Article  CAS  Google Scholar 

  27. Ji X, Chen D, Wang Q, Shen J, Guo S (2018) Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane. Compos Sci Technol 163:49–55

    Article  CAS  Google Scholar 

  28. Wang H, Qiao H, Guo J, Sun J, Li H, Zhang S, Gu X (2020) Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU). Compos Part B-Eng 182:107498

    Article  CAS  Google Scholar 

  29. Chen X, Ma C, Jiao C (2016) Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane. J Therm Anal Calorim 126:633–642

    Article  CAS  Google Scholar 

  30. Wang D, Guo J, Su M, Sun J, Zhang S, Yang W, Gu X, Li H (2020) The application of a novel char source from petroleum refining waste in flame retardant thermoplastic polyurethane. Polym Eng Sci 60:1029–1034

    Article  CAS  Google Scholar 

  31. Jiao C, Wang H, Zhang Z, Chen X (2017) Preparation and properties of an efficient smoke suppressant and flame-retardant agent for thermoplastic polyurethane. Polym Adv Technol 28:1690–1698

    Article  CAS  Google Scholar 

  32. Chen H, Deng C, Zhao Z-Y, Wan L, Yang A-H, Wang Y-Z (2020) Novel piperazine-containing oligomer as flame retardant and crystallization induction additive for thermoplastics polyurethane. Chem Eng J 400:125941

    Article  CAS  Google Scholar 

  33. Cromwell B, Levenson A, Levine M (2020) Thermogravimetric analysis of aromatic boronic acids for potential flame retardant applications. Thermochim Acta 683:178476

    Article  CAS  Google Scholar 

  34. Laachachi A, Cochez M, Leroy E, Ferriol M, Lopez-Cuesta JM (2007) Fire retardant systems in poly(methyl methacrylate): Interactions between metal oxide nanoparticles and phosphinates. Polym Degrad Stab 92:61–69

    Article  CAS  Google Scholar 

  35. Lorenzetti A, Besco S, Hrelja D, Roso M, Gallo E, Schartel B, Modesti M (2013) Phosphinates and layered silicates in charring polymers: The flame retardancy action in polyurethane foams. Polym Degrad Stab 98:2366–2374

    Article  CAS  Google Scholar 

  36. Tang G, Zhou L, Zhang P, Han Z, Chen D, Liu X, Zhou Z (2019) Effect of aluminum diethylphosphinate on flame retardant and thermal properties of rigid polyurethane foam composites. J Therm Anal Calorim 140:625–636

    Article  Google Scholar 

  37. Wang X, Zhang P, Huang ZC, Xing WY, Song L, Hu Y (2019) Effect of aluminum diethylphosphinate on the thermal stability and flame retardancy of flexible polyurethane foams. Fire Saf J 106:72–79

    Article  CAS  Google Scholar 

  38. Naik AD, Fontaine G, Samyn F, Delva X, Bourgeois Y, Bourbigot S (2013) Melamine integrated metal phosphates as non-halogenated flame retardants: Synergism with aluminium phosphinate for flame retardancy in glass fiber reinforced polyamide 66. Polym Degrad Stab 98:2653–2662

    Article  CAS  Google Scholar 

  39. Braun U, Bahr H, Sturm H, Schartel B (2008) Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cation. Polym Adv Technol 19:680–692

    Article  CAS  Google Scholar 

  40. Gallo E, Schartel B, Braun U, Russo P, Acierno D (2011) Fire retardant synergisms between nanometric Fe2O3 and aluminum phosphinate in poly(butylene terephthalate). Polym Adv Technol 22:2382–2391

    Article  CAS  Google Scholar 

  41. Koeppl T, Brehme S, Wolff-Fabris F, Altstaedt V, Schartel B, Doering M (2012) Structure-property relationships of halogen-free flame-retarded poly(butylene terephthalate) and glass fiber reinforced PBT. J Appl Polym Sci 124:9–18

    Article  CAS  Google Scholar 

  42. Langfeld K, Wilke A, Sut A, Greiser S, Ulmer B, Andrievici V, Limbach P, Bastian M, Schartel B (2015) Halogen-free fire retardant styrene-ethylene-butylene-styrene-based thermoplastic elastomers using synergistic aluminum diethylphosphinate-based combinations. J Fire Sci 33:157–177

    Article  CAS  Google Scholar 

  43. Sut A, Greiser S, Jaeger C, Schartel B (2015) Interactions in multicomponent flame-retardant polymers: Solid-state NMR identifying the chemistry behind it. Polym Degrad Stab 121:116–125

    Article  CAS  Google Scholar 

  44. Sut A, Greiser S, Jaeger C, Schartel B (2017) Synergy in flame-retarded epoxy resin. J Therm Anal Calorim 128:141–153

    Article  CAS  Google Scholar 

  45. Sanchez-Olivares G, Rabe S, Perez-Chavez R, Calderas F, Schartel B (2019) Industrial-waste agave fibres in flame-retarded thermoplastic starch biocomposites. Compos Part B-Eng 177

  46. Sut A, Metzsch-Zilligen E, Großhauser M, Pfaendner R, Schartel B (2019) Synergy between melamine cyanurate, melamine polyphosphate and aluminum diethylphosphinate in flame retarded thermoplastic polyurethane. Polym Test 74:196–204

    Article  CAS  Google Scholar 

  47. Guenther M, Levchik SV, Schartel B (2020) Bubbles and collapses: Fire phenomena of flame-retarded flexible polyurethane foams. Polym Adv Technol 31:2185–2198

    CAS  Google Scholar 

  48. Tomiak F, Schartel B, Wolf M, Drummer D (2020) Particle size related effects of multi-component flame-retardant systems in poly(butadiene terephthalate). Polym Basel 12

  49. Xu S, Li J, Ye Q, Shen L, Lin H (2021) Flame-retardant ethylene vinyl acetate composite materials by combining additions of aluminum hydroxide and melamine cyanurate: Preparation and characteristic evaluations. J Colloid Interface Sci 589:525–531

    Article  CAS  Google Scholar 

  50. Li Y-M, Deng C, Long J-W, Huang S-C, Zhao Z-Y, Wang Y-Z (2018) Improving fire retardancy of ceramifiable polyolefin system via a hybrid of zinc borate@melamine cyanurate. Polym Degrad Stab 153:325–332

    Article  CAS  Google Scholar 

  51. Tao W, Li J (2018) Melamine cyanurate tailored by base and its multi effects on flame retardancy of polyamide 6. Appl Surf Sci 456:751–762

    Article  CAS  Google Scholar 

  52. Kiliaris P, Papaspyrides CD, Pfaendner R (2008) Polyamide 6 filled with melamine cyanurate and layered silicates: evaluation of flame retardancy and physical properties. Macromol Mater Eng 293:740–751

    Article  CAS  Google Scholar 

  53. Kandola BK, Richard Horrocks A, Horrocks S (2001) Char formation in flame-retarded fibre-intumescent combinations. Part V exploring different fibre/intumescent combinations. Fire Mater 25:153–160

    Article  CAS  Google Scholar 

  54. Chen Y, Wang Q, Yan W, Tang H (2006) Preparation of flame retardant polyamide 6 composite with melamine cyanurate nanoparticles in situ formed in extrusion process. Polym Degrad Stab 91:2632–2643

    Article  CAS  Google Scholar 

  55. Feng X, Wang X, Cai W, Hong N, Hu Y, Liew KM (2016) Integrated effect of supramolecular self-assembled sandwich-like melamine cyanurate/MoS2 hybrid sheets on reducing fire hazards of polyamide 6 composites. J Hazard Mater 320:252–264

    Article  CAS  Google Scholar 

  56. Liu Y, Wang Q (2006) Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polym Degrad Stab 91:3103–3109

    Article  CAS  Google Scholar 

  57. Sha K, Hu YL, Wang YH, Xiao R (2014) Preparation of flame retardant polyamide 6/melamine cyanurate via in situ polymerisation and its characterisation. Mater Res Innov 18:843–847

    Article  Google Scholar 

  58. Zhao M, Yi D, Camino G, Frache A, Yang R (2017) Interdigitated crystalline MMT-MCA in polyamide 6. RSC Adv 7:861–869

    Article  CAS  Google Scholar 

  59. Rault F, Giraud S, Salauen F, Almeras X (2015) Development of a halogen free flame retardant masterbatch for polypropylene fibers. Polym Basel 7:220–234

    Google Scholar 

  60. Xu J, Li K, Deng H, Lv S, Fang P, Liu H, Shao Q, Guo Z (2019) Preparation of MCA-SiO2 and its flame retardant effects on glass fiber reinforced polypropylene. Fibers Polym 20:120–128

    Article  CAS  Google Scholar 

  61. Yang W, Yuen RKK, Hu Y, Lu H, Song L (2011) Development and characterization of fire retarded glass-fiber reinforced poly(1,4-butylene terephthalate) composites based on a novel flame retardant system. Ind Eng Chem Res 50:11975–11981

    Article  CAS  Google Scholar 

  62. Hu Z (2013) Studies on halogen-free flame retarded polyether-based polyurethane. Master Thesis, South China University of Technology

  63. Lu XS, Qiao XY, Yang T, Sun K, Chen XD (2011) Preparation and properties of environmental friendly nonhalogen flame retardant melamine cyanurate/nylon 66 composites. J Appl Polym Sci 122:1688–1697

    Article  CAS  Google Scholar 

  64. Afshari M, Gupta A, Jung D, Kotek R, Tonelli AE, Vasanthan N (2008) Properties of films and fibers obtained from Lewis acid–base complexed nylon 6,6. Polymer 49:1297–1304

    Article  CAS  Google Scholar 

  65. Xu M, Ma K, Jiang D, Zhang J, Zhao M, Guo X, Shao Q, Wujcik E, Li B, Guo Z (2018) Hexa-[4-(glycidyloxycarbonyl) phenoxy]cyclotriphosphazene chain extender for preparing high-performance flame retardant polyamide 6 composites. Polymer 146:63–72

    Article  CAS  Google Scholar 

  66. Liang T, Cai J, Liu S, Lai H, Zhao J (2019) Chain extension and synergistic flame-retardant effect of aromatic Schiff base diepoxide on polyamide 6/aluminum diethylphosphinate composites. Materials (Basel) 12:2217

    Article  CAS  Google Scholar 

  67. Tabuani D, Bellucci F, Terenzi A, Camino G (2012) Flame retarded Thermoplastic Polyurethane (TPU) for cable jacketing application. Polym Degrad Stab 97:2594–2601

    Article  CAS  Google Scholar 

  68. Casu A, Camino G, Giorgi MD, Flath D, Morone V, Zenonia R (1997) Fire-retardant mechanistic aspects of melamine cyanurate in polyamide copolymer. Polym Degrad Stab 58:297–302

    Article  CAS  Google Scholar 

  69. Chen W, Liu P, Cheng Y, Liu Y, Wang Q, Duan W (2019) Flame retardancy mechanisms of melamine cyanurate in combination with aluminum diethylphosphinate in epoxy resin. J Appl Polym Sci 136:47223

    Article  Google Scholar 

  70. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133

    Article  CAS  Google Scholar 

  71. Schartel B (2010) Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Materials 3:4710–4745

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Natural Science Foundations (No 22175006 and 51973006), 2022 Graduate innovation capability improvement program, and the research platform project of Beijing Technology and Business University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Chen.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6344 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, F., Chen, Y., Sun, Z. et al. Component ratio effects of melamine cyanurate and aluminum diethylphosphinate in flame retardant TPU. J Polym Res 30, 25 (2023). https://doi.org/10.1007/s10965-022-03401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03401-y

Keywords

Navigation