Skip to main content
Log in

Ratiometric synthesis of non-traditional polyesters from poly (ethylene glycol) and trimesic acid tethering bioapplication

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Non-traditional polyesters from low molecular weight Poly (ethylene glycol) (PEG, Mn 4000) and biocompatible Trimesic acid (TMA) were synthesised through stoichiometric feeding of PEG and TMA in the mole ratios starting from 1:0.5 to 1:5. The melt condensation was carried out under catalytic condition for a limited period of 6 h to prohibit gelation of the entire mass due to over-abundance of the functional groups. The polyesters were formed with substantial soluble yield; at lower acid concentration in the feed e.g. 1:0.5, 1:1 and 1:2-they were mostly branched while at higher concentration e.g. 1:3 and 1:5-they were significantly crosslinked. Nearly all the specimens contained partially reacted TMA molecules in the branch ends which made them pH responsive (the hydrodynamic sizes altered with change in pH). The polymers were characterized using solubility, spectroscopy, viscometry and particle size measurements to establish the microstructure, formation kinetics and branched topology. Nuclear magnetic resonance (1H NMR) established the maximum extent of branching (65%) at 1:5 mol composition. Suitability for bioapplication of the polyesters was examined from surface texture study and cell cytotoxicity analysis. The scanning electron microscopic (SEM) images portrayed adequate micro voids on the surface, on the other hand, the cytotoxicity study depicted those surfaces could adhere and support the growth of mammalian cells and also successfully survive the MTT assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anwunobi AP, Emeje MO (2011) Recent applications of natural polymers in nanodrug delivery. J Nanomed Nanotechnol s4(01). https://doi.org/10.4172/2157-7439.s4-002

  2. Jung K, Corrigan N, Wong EHH, Boyer C (2021) Bioactive synthetic polymers. Adv Mater 34(2):2105063. https://doi.org/10.1002/adma.202105063

    Article  CAS  Google Scholar 

  3. Ma X, Sun X, Chen J, Lei Y (2017) Natural or natural-synthetic hybrid polymer-based fluorescent polymeric materials for bio-imaging-related applications. Appl Biochem Biotechnol 183(2):461–487. https://doi.org/10.1007/s12010-017-2570-9

    Article  CAS  PubMed  Google Scholar 

  4. Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3(6):366–375. https://doi.org/10.3144/expresspolymlett.2009.46

    Article  CAS  Google Scholar 

  5. Manigandan V, Karthik R, Ramachandran S, Rajagopal S (2018) Chitosan applications in food industry. Biopolym Food Des 469–491. https://doi.org/10.1016/b978-0-12-811449-0.00015-3

  6. Benabid FZ, Zouai F (2016) Natural polymers: Cellulose, chitin, chitosan, gelatin, starch, carrageenan, xylan and dextran. Alger J Nat Prod 4(3):348–357. https://doi.org/10.5281/zenodo.199036

    Article  Google Scholar 

  7. Rayner M, Östbring K, Purhagen J (2015) Application of natural polymers in food. Nat Polym 115–161. https://doi.org/10.1007/978-3-319-26414-1_5

    Article  CAS  Google Scholar 

  8. Gomes M, Azevedo H, Malafaya P, Silva S, Oliveira J, Silva G, Sousa R, Mano J, Reis R (2008) Natural polymers in tissue engineering applications. Tissue Eng 145–192. https://doi.org/10.1016/b978-0-12-370869-4.00006-9

  9. Bassas-Galia M, Follonier S, Pusnik M, Zinn M (2017) Natural polymers. Bioresorbable Polym Biomed Appl 31–64. https://doi.org/10.1016/b978-0-08-100262-9.00002-1

  10. Liu D, Yang F, Xiong F, Gu N (2016) The smart drug delivery system and its clinical potential. Theranostics 6(9):1306–1323. https://doi.org/10.7150/thno.14858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ogaji IJ, Nep EI, Audu-Peter JD (2012) Advances in natural polymers as pharmaceutical excipients. Pharm Anal 03(01). https://doi.org/10.4172/2153-2435.1000146

  12. Hacker MC, Krieghoff J, Mikos AG (2019) Synthetic polymers. Princ Regen Med 559–590. https://doi.org/10.1016/b978-0-12-809880-6.00033-3

  13. Gunatillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Ann Rev 301–347. https://doi.org/10.1016/s1387-2656(06)12009-8

  14. Parray ZA, Hassan MI, Ahmad F, Islam A (2020) Amphiphilic nature of polyethylene glycols and their role in medical research. Polym Test 82:106316. https://doi.org/10.1016/j.polymertesting.2019.106316

    Article  CAS  Google Scholar 

  15. Feng J, Zhuo RX, Zhang XZ (2012) Construction of functional aliphatic polycarbonates for biomedical applications. Prog Polym Sci 37(2):211–236. https://doi.org/10.1016/j.progpolymsci.2011.07.008

    Article  CAS  Google Scholar 

  16. Xu Y, Wu X, Xie X, Zhong Y, Guidoin R, Zhang Z, Fu Q (2013) Synthesis of polycarbonate urethanes with functional poly(ethylene glycol) side chains intended for bioconjugates. Polymer 54(20):5363–5373. https://doi.org/10.1016/j.polymer.2013.07.069

    Article  CAS  Google Scholar 

  17. Chiellini E, Cinelli P, Chiellini F, Imam SH (2004) Environmentally degradable bio-based polymeric blends and composites. Macromol Biosci 4(3):218–231. https://doi.org/10.1002/mabi.200300126

    Article  CAS  PubMed  Google Scholar 

  18. Singh A, Kumar S, Acharya TK, Goswami C, Goswami L (2022) Application of nanohydroxyapatite-polysaccharide based biomaterial for bone cell mineralization in tissue engineering. Mater Today Commun 31:103783. https://doi.org/10.1016/j.mtcomm.2022.103783

    Article  CAS  Google Scholar 

  19. Sanyasi S, Kumar S, Ghosh A, Majhi RK, Kaur N, Choudhury P, Singh UP, Goswami C, Goswami L (2016) A modified polysaccharide-based hydrogel for enhanced osteogenic maturation and mineralization independent of differentiation factors. Macromol Biosci 17(3):1600268. https://doi.org/10.1002/mabi.201600268

    Article  CAS  Google Scholar 

  20. Yeasmin S, Malik D, Das T, Bandyopadhyay A (2015) Green synthesis of silver nano/micro particles using TKP and PVA and their anticancer activity. RSC Adv 5(50):39992–39999. https://doi.org/10.1039/c5ra02095f

    Article  CAS  Google Scholar 

  21. Das T, Yeasmin S, Khatua S, Acharya K, Bandyopadhyay A (2015) Influence of a blend of guar gum and poly(vinyl alcohol) on long term stability, and antibacterial and antioxidant efficacies of silver nanoparticles. RSC Adv 5(67):54059–54069. https://doi.org/10.1039/c5ra08257a

    Article  CAS  Google Scholar 

  22. Říhová B, Kovář M (2010) Immunogenicity and immunomodulatory properties of HPMA-based polymers☆. Adv Drug Deliv Rev 62(2):184–191. https://doi.org/10.1016/j.addr.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  23. Prajapati VD, Jani GK, Moradiya NG, Randeria NP (2013) Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohyd Polym 92(2):1685–1699. https://doi.org/10.1016/j.carbpol.2012.11.021

    Article  CAS  Google Scholar 

  24. Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492. https://doi.org/10.1039/b810371b

    Article  CAS  Google Scholar 

  25. Cavaleiro E, Duarte AS, Esteves AC, Correia A, Whitcombe MJ, Piletska EV, Piletsky SA, Chianella I (2015) Novel linear polymers able to inhibit bacterial quorum sensing. Macromol Biosci 15(5):647–656. https://doi.org/10.1002/mabi.201400447

    Article  CAS  PubMed  Google Scholar 

  26. Sengupta S, Singh A, Dutta K, Sahu RP, Kumar S, Goswami C, Chawla S, Goswami L, Bandyopadhyay A (2021) Branched/hyperbranched copolyesters from poly(vinyl alcohol) and citric acid as delivery agents and tissue regeneration scaffolds. Macromol Chem Phys 222(17):2100134. https://doi.org/10.1002/macp.202100134

    Article  CAS  Google Scholar 

  27. Sengupta S, Kumar S, Das T, Goswami L, Ray S, Bandyopadhyay A (2019) A polyester with hyperbranched architecture as potential nano-grade antibiotics: An in-vitro study. Mater Sci Eng, C 99:1246–1256. https://doi.org/10.1016/j.msec.2019.02.057

    Article  CAS  Google Scholar 

  28. Du J, Bandara HMHN, Du P, Huang H, Hoang K, Nguyen D, Mogarala SV, Smyth HDC (2015) Improved biofilm antimicrobial activity of polyethylene glycol conjugated tobramycin compared to tobramycin in Pseudomonas aeruginosa biofilms. Mol Pharm 12(5):1544–1553. https://doi.org/10.1021/mp500846u

    Article  CAS  PubMed  Google Scholar 

  29. Sengupta S, Das T, Ghorai UK, Bandyopadhyay A (2017) Copolymers from methyl methacrylate and butyl acrylate with hyperbranched architecture. J Appl Polym Sci 134(42):45356. https://doi.org/10.1002/app.45356

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Bandyopadhyay.

Ethics declarations

Conflict of interest

The authors hereby declare that there is no conflict of interest regarding this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Sengupta, S., Singha, B. et al. Ratiometric synthesis of non-traditional polyesters from poly (ethylene glycol) and trimesic acid tethering bioapplication. J Polym Res 30, 299 (2023). https://doi.org/10.1007/s10965-023-03664-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03664-z

Keywords

Navigation