Skip to main content

Advertisement

Log in

Efficient preparation of polydimethylsiloxane-based phase change composites by forced network assembly with outstanding thermal management capability

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Phase change materials (PCMs) have been widely used in passive thermal management and energy storage due to their high latent heat capacity. However, the low thermal conductivity and leakage problems of PCMs are two bottlenecks for its application in the field of heat-related applications. Although many present studies can tackle one or two of these problems by preparing phase change composites (PCCs), it is still a challenge to achieve high performance PCCs with excellent thermal, mechanical, and phase change properties simultaneously. In this work, we report a spatial confining forced network assembly (SCFNA) method to efficiently prepare the thermal conductive, flexible, leak-proof hexagonal boron nitride/paraffin wax/ polydimethylsiloxane (hBN/PW/PDMS) PCCs by constructing hBN and PW thermal conductive networks as the functional matrix of PCCs. In the hBN/PW/PDMS PCCs, PW is served as the PCM, a dense hBN network provides the high thermal conductivity, and the mechanical properties and shape stability are provided by PDMS. The hBN/PW/PDMS PCCs as thermal interface materials reduce the LED chips surface temperature and exhibit efficient and reliable thermal management performance. Our work provides an efficient and economical method for the preparation of PCCs with outstanding thermal management capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Si W et al (2020) Enhancing thermal conductivity via conductive network conversion from high to low thermal dissipation in polydimethylsiloxane composites. J Mater Chem C 8(10):3463–3475

    Article  CAS  Google Scholar 

  2. He X et al (2019) Enhancing thermal conductivity of polydimethylsiloxane composites through spatially confined network of hybrid fillers. Compos Sci Technol 172:163–171

    Article  CAS  Google Scholar 

  3. Zhang X et al (2021) Highly thermally conductive and electrically insulating polydimethylsiloxane composites prepared by ultrasonic-assisted forced infiltration for thermal management applications. Compos Part B Eng 224

  4. Feng Y et al (2018) Advanced metal oxides and nitrides thermoelectric materials for energy harvesting. ES Mater Manuf

  5. Gu J, Ruan K (2021) Breaking through bottlenecks for thermally conductive polymer composites: A perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett 13(1)

  6. He X et al (2021) A mini review on factors affecting network in thermally enhanced polymer composites: filler content, shape, size, and tailoring methods. Adv Compos Hybrid Mater 5(1):21–38

    Article  Google Scholar 

  7. Zhang H et al (2020) Thermal conductivity enhancement via conductive network conversion from “sand-like” to “stone-like” in the polydimethylsiloxane composites. Compos Commun 22

  8. Wang J et al (2021) Preparation of flexible and elastic thermal conductive nanocomposites via ultrasonic-assisted forced infiltration. Compos Sci Technol 202

  9. Gong S et al (2021) High thermal conductivity and mechanical strength phase change composite with double supporting skeletons for industrial waste heat recovery. ACS Appl Mater Interfaces 13(39):47174–47184

    Article  CAS  PubMed  Google Scholar 

  10. Wu S et al (2020) Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management. J Mater Chem A 8(38):20011–20020

    Article  CAS  Google Scholar 

  11. Yang G et al Boron nitride microsheets bridged with reduced graphene oxide as scaffolds for multifunctional shape stabilized phase change materials. Solar Energy Mater Solar Cells 209

  12. Luo F et al (2022) Shape-stabilized phase change materials with superior thermal conductivity for thermal energy harvesting. ACS Appl Polym Mater 4(3):2160–2168

    Article  CAS  Google Scholar 

  13. Kumar PM et al (2020) Experimental and theoretical investigations on thermal conductivity of the paraffin wax using CuO nanoparticles. Mater Today Proc 22:1987–1993

    Article  Google Scholar 

  14. George M et al (2020) A novel polyaniline (PANI)/ paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability. Sol Energy 204:448–458

    Article  CAS  Google Scholar 

  15. Xie Y et al (2021) Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv Compos Hybrid Mater 4(3):543–551

    Article  CAS  Google Scholar 

  16. Li X et al (2021) Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J Mater Sci Technol 86:171–179

    Article  CAS  Google Scholar 

  17. Huang J et al (2021) Advances and applications of phase change materials (PCMs) and PCMs-based technologies. ES Mater Manuf

  18. Lu X et al (2020) Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage. Eng Sci

  19. Qian T et al (2018) Comparative study of single-walled carbon nanotubes and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of PEG-infiltrated phase-change material composites. ACS Sustain Chem Eng 7(2):2446–2458

    Article  Google Scholar 

  20. Li M, Wang C (2019) Preparation and characterization of GO/PEG photo-thermal conversion form-stable composite phase change materials. Renew Energy 141:1005–1012

    Article  CAS  Google Scholar 

  21. Tu J et al (2019) Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites. Adv Compos Hybrid Mater 2(3):471–480

    Article  CAS  Google Scholar 

  22. Rathore PKS, Shukla SK (2021) Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review. Energy Build 236

  23. Lamrani B et al (2021) A simplified thermal model for a lithium-ion battery pack with phase change material thermal management system. J Energy Storage 44

  24. Wu W et al (2015) Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management. Energy Convers Manag 101:278–284

    Article  CAS  Google Scholar 

  25. Nagar S, Sharma K (2020) Modern solar systems driven by nanoparticles-based fatty acids and paraffin wax phase change materials. J Mater Sci 56(8):4941–4966

    Article  Google Scholar 

  26. Pan D et al (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14(1)

  27. Kormakov S et al (2018) A mathematical model for predicting conductivity of polymer composites with a forced assembly network obtained by SCFNA method. Polym Compos 40(5):1819–1827

    Article  Google Scholar 

  28. Xiang J, Drzal LT (2011) Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mater Sol Cells 95(7):1811–1818

    Article  CAS  Google Scholar 

  29. Yan X et al (2020) Efficient solvent-free microwave irradiation synthesis of highly conductive polypropylene nanocomposites with lowly loaded carbon nanotubes. ES Mater Manuf

  30. Jadhav PR et al (2020) Mechanical behavior and fractography of graphite and boron carbide particulates reinforced A356 alloy hybrid metal matrix composites. Adv Compos Hybrid Mater 3(1):114–119

    Article  CAS  Google Scholar 

  31. Zhou Y, Liu F, Chen C-Y (2019) Use of BN-coated copper nanowires in nanocomposites with enhanced thermal conductivity and electrical insulation. Adv Compos Hybrid Mater 2(1):46–50

    Article  CAS  Google Scholar 

  32. Zhang X et al (2021) Constructing dual thermal conductive networks in electrospun polyimide membranes with highly thermally conductivity but electrical insulation properties. Adv Compos Hybrid Mater 4(4):1102–1112

    Article  CAS  Google Scholar 

  33. Guo Y et al (2019) Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl Mater Interfaces 11(28):25465–25473

    Article  CAS  PubMed  Google Scholar 

  34. Fang X et al (2014) Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energy Convers Manag 80:103–109

    Article  CAS  Google Scholar 

  35. Liu C et al (2020) Remarkably reduced thermal contact resistance of graphene/olefin block copolymer/paraffin form stable phase change thermal interface material. Int J Heat Mass Transf 163

  36. Qian Z et al (2018) Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability. Energy Build 158:1184–1188

    Article  Google Scholar 

  37. Luo J et al (2022) Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chem Eng J 430

  38. Javadi FS, Metselaar HSC, Ganesan P (2020) Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review. Sol Energy 206:330–352

    Article  CAS  Google Scholar 

  39. Kalbasi R (2021) Introducing a novel heat sink comprising PCM and air - Adapted to electronic device thermal management. Int J Heat Mass Transf 169

  40. Rathore PKS, Shukla SK (2021) Improvement in thermal properties of PCM/Expanded vermiculite/expanded graphite shape stabilized composite PCM for building energy applications. Renew Energy 176:295–304

    Article  CAS  Google Scholar 

  41. Safdari M, Ahmadi R, Sadeghzadeh S (2020) Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management. Energy 193

  42. Zhou Y et al (2020) Recent advances in thermal interface materials. ES Mater Manuf

  43. Bai L et al (2018) Effect of PLA crystallization on the thermal conductivity and breakdown strength of PLA/BN composites. ES Mater Manuf

  44. Du Q et al (2022) Skeleton designable SGP/EA resin composites with integrated thermal conductivity, electromagnetic interference shielding, and mechanical performances. Compos Sci Technol 229

  45. Wang L et al (2019) Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 141:506–514

    Article  CAS  Google Scholar 

  46. Cheng H et al (2021) PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci

  47. Jing X et al (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater

  48. Chen J et al (2017) Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl Mater Interfaces 9(36):30909–30917

    Article  CAS  PubMed  Google Scholar 

  49. Zhang H et al (2022) Synergistic enhanced thermal conductivity of polydimethylsiloxane composites via introducing SCF and hetero-structured GB@rGO hybrid fillers. Adv Compos Hybrid Mater

  50. Chen C et al (2015) Novel form stable phase change materials based on the composites of polyethylene glycol/polymeric solid-solid phase change material. Sol Energy Mater Sol Cells 134:80–88

    Article  CAS  Google Scholar 

  51. Yang J et al (2016) Experimental study on enhancement of thermal energy storage with phase-change material. Appl Energy 169:164–176

    Article  CAS  Google Scholar 

  52. Park J, Kim T, Leigh S-B (2014) Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Sol Energy 105:561–574

    Article  Google Scholar 

  53. Guo Y, Ruan K, Gu J (2021) Controllable thermal conductivity in composites by constructing thermal conduction networks. Mater Today Phys 20

  54. Mills A et al (2006) Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl Therm Eng 26(14–15):1652–1661

    Article  CAS  Google Scholar 

  55. Zhang Z et al (2018) Experimental investigation on n–octadecane/polystyrene/expanded graphite composites as form–stable thermal energy storage materials. Energy 157:625–632

    Article  CAS  Google Scholar 

  56. Sun J et al (2021) The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Mater Manuf

  57. Sun J et al (2019) Development and application of hot embossing in polymer processing: A review. ES Mater Manuf

  58. Wang S et al (2020) Optimal analysis for thermal conductivity variation of EVA/SCF composites prepared by spatial confining forced network assembly. Mater Today Commun 25

  59. Zhang X et al (2021) Influence of rigid particles on thermal conductivity enhancement of polydimethylsiloxane composite during spatial confining forced network assembly. J Appl Polym Sci 139(8)

  60. Du Y et al (2021) Efficient construction and online evaluation of conductive networks within polydimethylsiloxane composites via continuous SCFNA method. Compos Commun 24

  61. Wu D et al (2017) Spatial Confining Forced Network Assembly for preparation of high-performance conductive polymeric composites. Compos A Appl Sci Manuf 102:88–95

    Article  CAS  Google Scholar 

  62. Zhuang J et al (2018) Fabrication and testing of metal/polymer microstructure heat exchangers based on micro embossed molding method. Microsyst Technol 25(2):381–388

    Article  Google Scholar 

  63. Kormakov S et al (2019) The electrical conductive behaviours of polymer-based three-phase composites prepared by spatial confining forced network assembly. Express Polym Lett 13(8):713–723

    Article  CAS  Google Scholar 

  64. Du Q et al (2022) Preparation of PP/ SCF thermally conductive composites with forced‐assembled networks by multiple injection compression molding. J Appl Polym Sci 139(34)

  65. Li C et al (2022) Construction of bi-continuous structure in fPC/ABS-hBN(GB) composites with simultaneous enhanced thermal conductivity and mechanical properties. Compos Sci Technol 223

  66. Wu H et al (2020) Polydimethylsiloxane/multi-walled carbon nanotube nanocomposite film prepared by ultrasonic-assisted forced impregnation with a superior photoacoustic conversion efficiency of 9.98 × 10−4. J Nanophotonics 14(04)

  67. Gao Q et al (2021) Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater 4(2):274–285

    Article  CAS  Google Scholar 

  68. Cheng H et al (2021) Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybrid Mater 4(3):505–513

    Article  CAS  Google Scholar 

  69. Zhang J et al (2023) Block copolymer functionalized quartz fibers/cyanate ester wave-transparent laminated composites. J Mater Sci Technol 139:189–197

    Article  Google Scholar 

  70. Agarwal A, Sarviya RM (2017) Characterization of commercial grade paraffin wax as latent heat storage material for solar dryers. Mater Today Proc 4(2):779–789

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports from National Natural Science Foundation of China (No. 52003019), Sinopec key projects (No. 420043-6), and Talents Introduction Project in Beijing University of Chemical Technology (No. buctrc201909).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyao Sun, Jianyun He or Zhanhu Guo.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2008 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Q., Li, C., Sun, J. et al. Efficient preparation of polydimethylsiloxane-based phase change composites by forced network assembly with outstanding thermal management capability. J Polym Res 30, 158 (2023). https://doi.org/10.1007/s10965-023-03553-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03553-5

Keywords

Navigation