Skip to main content
Log in

Production of PLA/NR blends compatibilized with EE-g-GMA and POE-g-GMA: an investigation of mechanical, thermal, thermomechanical properties and morphology

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA)/natural rubber (NR) blends were compatibilized with elastomeric ethylene grafted with glycidyl methacrylate (EE-g-GMA), and poly(ethylene octene) grafted with glycidyl methacrylate(POE-g-GMA), aiming at the PLA toughening. The blends were processed using a twin-screw extruder and then injection molded. The mechanical, thermal, and thermomechanical properties and morphology were investigated. The addition of 10% NR to PLA resulted in a 77% increase in impact strength. Incorporating 10% of EE-g-GMA and POE-g-GMA in the blends promoted a significant increase in impact strength, with gains of 256% and 250%, respectively. Elastic modulus and tensile strength decreased and the elongation at break compared increased to pure PLA. Therefore, the developed blends exhibited ductile behavior. The heat deflection temperature showed no significant differences between the blends and pure PLA, indicating that the thermomechanical stability was maintained. The differential scanning calorimetry analysis confirmed an increase in the degree of crystallinity. Additionally, the incorporation of EE-g-GMA accelerated the blend’s crystallization. The thermal stability of the compatibilized blends was higher than PLA, confirming the increased tendency of the degree of crystallinity. The morphology indicated a refinement, good dispersion, and adhesion of the NR phases in the PLA matrix, contributing to improving toughness. These results show that the blends have the potential to produce eco-friendly materials, contributing to a more environmentally friendly cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All the experimental data is included in the manuscript.

References

  1. Silva RV, de Brito J (2018) Plastic wastes. In: Siddique R, Cachim P (eds) Waste and Supplementary Cementitious Materials in Concrete, Woodhead Publishing, p 199–227

  2. dos Santos Filho EA, Siqueira DD, Araújo EM, Luna CBB, de Medeiros EP (2021) The impact of the Macaíba components addition on the biodegradation acceleration of poly (Ɛ-Caprolactone) (PCL). J Polym Environ 30:443-460. https://doi.org/10.1007/s10924-021-02215-1

  3. Parthasarathy A, Tyler AC, Hoffman MJ, Savka MA, Hudson AO (2019) Is plastic pollution in aquatic and terrestrial environments a driver for the transmission of pathogens and the evolution of antibiotic resistance? Environ Sci Technol 53:1744–1745. https://doi.org/10.1021/acs.est.8b07287

    Article  CAS  PubMed  Google Scholar 

  4. Morales A, Labidi J, Gullón P, Astray G (2021) Synthesis of advanced biobased green materials from renewable biopolymers. Curr Opin Green Sustain Chem 29:100436. https://doi.org/10.1016/j.cogsc.2020.100436

    Article  CAS  Google Scholar 

  5. Pinto L, Bonifacio MA, De Giglio E, Santovito E, Cometa S, Bevilacqua A, Baruzzi F (2021) Biopolymer hybrid materials: Development, characterization, and food packaging applications. Food Packag Shelf Life 28:100676. https://doi.org/10.1016/j.fpsl.2021.100676

    Article  CAS  Google Scholar 

  6. Delamarche E, Massardier V, Bayard R, Santos ED (2020) A review to guide eco-design of reactive polymer-based materials. In: Gutiérrez TJ (ed) Reactive and functional polymers volume four: surface, interface, biodegradability, compostability and recycling. Springer International Publishing, Cham, pp 207–241

    Chapter  Google Scholar 

  7. Jin FL, Hu RR, Park SJ (2019) Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review. Compos Part B Eng 164:287–296. https://doi.org/10.1016/j.compositesb.2018.10.078

    Article  CAS  Google Scholar 

  8. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey MC (2019) Poly (lactic acid) blends: Processing, properties and applications. Int J Biol Macromol 125:307–360. https://doi.org/10.1016/j.ijbiomac.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  9. Vert M, Schwarch G, Coudane J (1995) Present and future of PLA polymers. J Macromol Sci Part A 32:787–796. https://doi.org/10.1080/10601329508010289

    Article  Google Scholar 

  10. Liu H, Chen N, Shan P, Song P, Liu X, Chen J (2019) Toward fully bio-based and supertough PLA blends via in situ formation of cross-linked biopolyamide continuity network. Macromolecules 52:8415–8429. https://doi.org/10.1021/acs.macromol.9b01398

    Article  CAS  Google Scholar 

  11. Cheroennet N, Pongpinyopap S, Leejarkpai T, Suwanmanee U (2017) A trade-off between carbon and water impacts in bio-based box production chains in Thailand: A case study of PS, PLAS, PLAS/starch, and PBS. J Clean Prod 167:987–1001. https://doi.org/10.1016/j.jclepro.2016.11.152

    Article  CAS  Google Scholar 

  12. Leejarkpai T, Mungcharoen T, Suwanmanee U (2016) Comparative assessment of global warming impact and eco-efficiency of PS (polystyrene), PET (polyethylene terephthalate) and PLA (polylactic acid) boxes. J Clean Prod 125:95–107. https://doi.org/10.1016/j.jclepro.2016.03.029

    Article  CAS  Google Scholar 

  13. Madival S, Auras R, Singh SP, Narayan R (2009) Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. J Clean Prod 17:1183–1194. https://doi.org/10.1016/j.jclepro.2009.03.015

    Article  CAS  Google Scholar 

  14. Wojtyła S, Klama P, Baran T (2017) Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. J Occup Environ Hyg 14:D80–D85. https://doi.org/10.1080/15459624.2017.1285489

    Article  CAS  PubMed  Google Scholar 

  15. Pongtanayut K, Thongpin C, Santawitee O (2013) The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR Blends. Energy Procedia 34:888–897. https://doi.org/10.1016/j.egypro.2013.06.826

    Article  CAS  Google Scholar 

  16. LovinčićMilovanović V, Hajdinjak I, Lovriša I, Vrsaljko D (2019) The influence of the dispersed phase on the morphology, mechanical and thermal properties of PLA/PE-LD and PLA/PE-HD polymer blends and their nanocomposites with TiO2 and CaCO3. Polym Eng Sci 59:1395–1408. https://doi.org/10.1002/pen.25124

    Article  CAS  Google Scholar 

  17. Aghjeh MR, Nazari M, Khonakdar HA, Jafari SH, Wagenknecht U, Heinrich G (2015) In depth analysis of micro-mechanism of mechanical property alternations in PLA/EVA/clay nanocomposites: A combined theoretical and experimental approach. Mater Design 88:1277–1289. https://doi.org/10.1016/j.matdes.2015.09.081

    Article  CAS  Google Scholar 

  18. Yuan D, Chen K, Xu C, Chen Z, Chen Y (2014) Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems. Carbohydr Polym 113:438–445. https://doi.org/10.1016/j.carbpol.2014.07.044

    Article  CAS  PubMed  Google Scholar 

  19. Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831. https://doi.org/10.1016/j.matchemphys.2011.05.016

    Article  CAS  Google Scholar 

  20. Juntuek P, Ruksakulpiwat C, Chumsamrong P, Ruksakulpiwat Y (2012) Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends 125:745–754. https://doi.org/10.1002/app.36263

    Article  CAS  Google Scholar 

  21. Kim JK, Kim S, Park CJP (1997) Compatibilization mechanism of polymer blends with an in-situ compatibilizer 38:2155–2164. https://doi.org/10.1016/S0032-3861(96)00750-1

    Article  CAS  Google Scholar 

  22. dos Santos Filho EA, Luna CBB, Siqueira DD, Ferreira EdSB, Araújo EM (2022) Tailoring Poly(lactic acid) (PLA) properties: effect of the impact modifiers EE-g-GMA and POE-g-GMA. Polymers 14:136-151. https://doi.org/10.3390/polym14010136

  23. Lima JCC, Araújo JP, Agrawal P, Mélo TJA (2016) Efeito do teor do copolímero SEBS no comportamento reológico da blenda PLA/SEBS. Revista Eletrônica de Materiais e Processos 11:10–17. http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/view/497

  24. Xiao H, Lu W, Yeh J-T (2009) Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci 112:3754–3763. https://doi.org/10.1002/app.29800

    Article  CAS  Google Scholar 

  25. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043

    Article  CAS  PubMed  Google Scholar 

  26. Agrawal P, Araújo APM, Lima JCC, Cavalcanti SN, Freitas DMG, Farias GMG, Ueki MM, Mélo TJA (2019) Rheology, mechanical properties and morphology of poly(lactic acid)/ethylene vinyl acetate blends. J Polym Environ 27:1439–1448. https://doi.org/10.1007/s10924-019-01445-8

    Article  CAS  Google Scholar 

  27. Luna CBB, Siqueira DD, Araújo EM, Wellen RMR (2021) Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters. MOMENTO 62:1–17. https://doi.org/10.15446/mo.n62.89099

  28. Xu Y, Zhao C, Guo Z, Dong W, Liu X, Guo W (2022) EPDM-g-MAH toughened bio-based polyamide 56 to prepare thermoplastic polyamide elastomer and the performance characterization. J Appl Polym Sci 139:52346–52360. https://doi.org/10.1002/app.52346

  29. Luna CBB, Siqueira DD, da Silva Barbosa Ferreira E, Araújo EM, Wellen RMR (2021) Reactive processing of PA6/EPDM-MA blends as modifier for application and development of high-performance polypropylene. J Vinyl Addit Technol 27:736–756. https://doi.org/10.1002/vnl.21846

  30. Luna CBB, da Silva AL, Siqueira DD, dos Santos Filho EA, Araújo EM, do Nascimento EP, de Melo Costa ACF (2022) Preparation of flexible and magnetic PA6/SEBS-MA nanocomposites reinforced with Ni-Zn ferrite. Polym Compos 43:68–83. https://doi.org/10.1002/pc.26357

  31. Luna CBB, da Silva Barbosa Ferreira E, da Silva AL, Araújo EM, de Melo Costa ACF, Wellen RMR (2022) Tuning the performance of PA6/EPDM-MA nanocomposites reinforced with Ni0.5Zn0.5Fe2O4. Effect of the mixing protocol on mechanical, thermal, thermomechanical, magnetic, and morphological behavior. Polym Compos 43:4447–4462. https://doi.org/10.1002/pc.26704

  32. Wu C-J, Kuo J-F, Chen C-Y (1993) Rubber toughened polyamide 6: The influences of compatibilizer on morphology and impact properties. Polym Eng Sci 33:1329–1335. https://doi.org/10.1002/pen.760332005

    Article  CAS  Google Scholar 

  33. Angola JC, Fujita Y, Sakai T, Inoue T (1988) Compatibilizer-aided toughening in polymer blends consisting of brittle polymer particles dispersed in a ductile polymer matrix. J Polym Sci, Part B: Polym Phys 26:807–816. https://doi.org/10.1002/polb.1988.090260407

    Article  CAS  Google Scholar 

  34. Luna CBB, Ferreira ESB, da Silva LJMD, da Silva WA, Araújo EM (2019) Blends with technological potential of copolymer polypropylene with polypropylene from post-consumer industrial containers. Mater Res Express 6:125319. https://doi.org/10.1088/2053-1591/ab56b2

    Article  CAS  Google Scholar 

  35. de Mello FB, Nachtigall SMB, Salles CDA, Amico SC (2018) Compatibilization and mechanical properties of compression-molded polypropylene/high-impact polystyrene blends. Prog Rubber Plast Recycl Technol 34:117–127. https://doi.org/10.1177/1477760618798275

  36. Luna CBB, Siqueira DD, Araújo EM, do Nascimento EP, da Costa Agra de Melo JB (2022) Evaluation of the SEBS copolymer in the compatibility of PP/ABS blends through mechanical, thermal, thermomechanical properties, and morphology. Polym Adv Technol. 33:111–124. https://doi.org/10.1002/pat.5495

  37. Ferreira ESB, Luna CBB, Siqueira DD, Araújo EM, de França DC, Wellen RMR (2021) Annealing effect on Pla/Eva blends performance. J Polym Environ. 30:541–554. https://doi.org/10.1007/s10924-021-02220-4

  38. da Silva WA, Luna CBB, de Melo JB, Araújo EM, Filho EADS, Duarte RNC (2021) Feasibility of manufacturing disposable cups using PLA/PCL composites reinforced with wood powder. J Polym Environ 29:2932–2951. https://doi.org/10.1007/s10924-021-02076-8

    Article  CAS  Google Scholar 

  39. Bhasney SM, Bhagabati P, Kumar A, Katiyar V (2019) Morphology and crystalline characteristics of polylactic acid [PLA]/linear low density polyethylene [LLDPE]/microcrystalline cellulose [MCC] fiber composite. Compos Sci Technol 171:54–61. https://doi.org/10.1016/j.compscitech.2018.11.028

    Article  CAS  Google Scholar 

  40. Li Y, Han C, Yu Y, Huang D (2019) Uniaxial stretching and properties of fully biodegradable poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends. Int J Biol Macromol 129:1–12. https://doi.org/10.1016/j.ijbiomac.2019.02.006

    Article  CAS  PubMed  Google Scholar 

  41. Aguado R, Espinach FX, Vilaseca F, Tarrés Q, Mutjé P, Delgado-Aguilar M (2022) Approaching a Zero-waste strategy in rapeseed (Brassica napus) exploitation: sustainably approaching bio-based polyethylene composites. Sustainability 14:7942–7960. https://doi.org/10.3390/su14137942

  42. Hanken RBL, Arimatéia RR, Farias GMG, Agrawal P, Santana LNL, Freitas DMG, de Mélo TJA (2019) Effect of natural and expanded vermiculite clays on the properties of eco-friendly biopolyethylene-vermiculite clay biocomposites. Compos Part B Eng 175:107184. https://doi.org/10.1016/j.compositesb.2019.107184

    Article  CAS  Google Scholar 

  43. Luna CBB, da Silva Barbosa Ferreira E, dos Santos Nogueira JA, Araújo EM, do Nascimento EP, da Costa Agra de Melo JB (2021) Biopolyethylene/Morinda citrifolia cellulosic biocomposites: The impact of chemical crosslinking and PE-g-MA compatibilizer. Polym Compos 42:6551–6569. https://doi.org/10.1002/pc.26320

  44. Hanon MM, Marczis R, Zsidai L (2021) Influence of the 3D printing process settings on tensile strength of PLA and HT-PLA. Period Polytech Mech Eng 65:38–46. https://doi.org/10.3311/PPme.13683

    Article  Google Scholar 

  45. Luzanin O, Movrin D, Stathopoulos V, Pandis P, Radusin T, Guduric V (2019) Impact of processing parameters on tensile strength, in-process crystallinity and mesostructure in FDM-fabricated PLA specimens. Rapid Prototyping Journal 25:1398–1410. https://doi.org/10.1108/RPJ-12-2018-0316

    Article  Google Scholar 

  46. Ferreira ED, Luna CB, Siqueira DD, dos Santos Filho EA, Araújo EM, Wellen RM (2021) Production of eco-sustainable materials: compatibilizing action in poly (lactic acid)/high-density biopolyethylene bioblends. Sustainability 13:12157–2174. https://doi.org/10.3390/su132112157

  47. Abdullah Sani NS, Arsad A, Rahmat AR, Mohammad NNB (2015) Effects of compatibilizer on thermal and mechanical properties of PLA/NR blends. In: Proceedings of the Materials Science Forum, pp 241–245

  48. Bubeck RA, Merrington A, Dumitrascu A, Smith PB (2018) Thermal analyses of poly(lactic acid) PLA and micro-ground paper blends. J Therm Anal Calorim 131:309–316. https://doi.org/10.1007/s10973-017-6466-2

    Article  CAS  Google Scholar 

  49. Ghasemi S, Behrooz R, Ghasemi I, Yassar RS, Long F (2017) Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA). J Thermoplast Compos Mater 31:1090–1101. https://doi.org/10.1177/0892705717734600

    Article  CAS  Google Scholar 

  50. Jamnongkan T, Jaroensuk O, Khankhuean A, Laobuthee A, Srisawat N, Pangon A, Mongkholrattanasit R, Phuengphai P, Wattanakornsiri A, Huang C-F (2022) A comprehensive evaluation of mechanical, thermal, and antibacterial properties of PLA/ZnO nanoflower biocomposite filaments for 3D printing application. Polymers 14:600–612. https://doi.org/10.3390/polym14030600

  51. Ferreira ESB, Luna CBB, dos Santos Filho EA, Wellen RMR, Araújo EM (2023) Use of crosslinking agent to produce high-performance PLA/EVA blends via reactive processing. J Vinyl Addit Technol 29:161–175. https://doi.org/10.1002/vnl.21951

  52. Orellana-Barrasa J, Ferrández-Montero A, Boccaccini AR, Ferrari B, Pastor JY (2022) The mechanical, thermal, and chemical properties of PLA-Mg filaments produced via a colloidal route for fused-filament fabrication. Polymers 14:5414–5436. https://doi.org/10.3390/polym14245414

  53. Parida M, Shajkumar A, Mohanty S, Biswal M, Nayak SK (2022) Poly(lactic acid) (PLA)-based mulch films: evaluation of mechanical, thermal, barrier properties and aerobic biodegradation characteristics in real-time environment. Polym Bull. https://doi.org/10.1007/s00289-022-04203-4

    Article  Google Scholar 

  54. Gong J, Qiang Z, Ren J (2022) In situ grafting approach for preparing PLA/PHBV degradable blends with improved mechanical properties. Polym Bull 79:9543–9562. https://doi.org/10.1007/s00289-021-03958-6

    Article  CAS  Google Scholar 

  55. Wellen RMR, Rabello MS (2005) The kinetics of isothermal cold crystallization and tensile properties of poly(ethylene terephthalate). J Mater Sci 40:6099–6104. https://doi.org/10.1007/s10853-005-3173-3

    Article  CAS  Google Scholar 

  56. Piorkowska E, Rutledge GC (2013) Handbook of polymer crystallization. John Wiley & Sons

  57. Jerschow P, Janeschitz-Kriegl H (1997) The role of long molecules and nucleating agents in shear induced crystallization of isotactic polypropylenes**. Int Polym Proc 12:72–77. https://doi.org/10.3139/217.970072

    Article  CAS  Google Scholar 

  58. Luna CBB, da Silva Barbosa Ferreira E, Siqueira DD, dos Santos Filho EA, Araújo EM (2022) Additivation of the ethylene–vinyl acetate copolymer (EVA) with maleic anhydride (MA) and dicumyl peroxide (DCP): the impact of styrene monomer on cross-linking and functionalization. Polym Bull 79:7323–7346.https://doi.org/10.1007/s00289-021-03856-x

  59. Wang X, Mi J, Wang J, Zhou H, Wang X (2018) Multiple actions of poly(ethylene octene) grafted with glycidyl methacrylate on the performance of poly(lactic acid). RSC Adv 8:34418–34427. https://doi.org/10.1039/C8RA07510G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tejada-Oliveros R, Balart R, Ivorra-Martinez J, Gomez-Caturla J, Montanes N, Quiles-Carrillo L (2021) Improvement of impact strength of polylactide blends with a thermoplastic elastomer compatibilized with biobased maleinized linseed oil for applications in rigid packaging. Molecules 26:240. https://doi.org/10.3390/molecules26010240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gigante V, Canesi I, Cinelli P, Coltelli MB, Lazzeri A (2019) Rubber toughening of Polylactic Acid (PLA) with Poly(butylene adipate-co-terephthalate) (PBAT): mechanical properties, fracture mechanics and analysis of ductile-to-brittle behavior while varying temperature and test speed. Eur Polymer J 115:125–137. https://doi.org/10.1016/j.eurpolymj.2019.03.015

    Article  CAS  Google Scholar 

  62. Koning C, Van Duin M, Pagnoulle C, Jerome R (1998) Strategies for compatibilization of polymer blends. Prog Polym Sci 23:707–757. https://doi.org/10.1016/S0079-6700(97)00054-3

    Article  CAS  Google Scholar 

  63. Ajji A, Utracki LA (1996) Interphase and compatibilization of polymer blends. Polym Eng Sci 36:1574–1585. https://doi.org/10.1002/pen.10554

  64. de Souza Morais DD, Luna CBB, Bezerra EB, de França DC, Araújo EM, do Nascimento EP, de Oliveira AD, de Mélo TJA (2022) Performance of Poly(caprolactone) (PCL) as an impact modifier for Polystyrene (PS): effect of functionalized compatibilizers with maleic anhydride and glycidyl methacrylate. Sustainability 14:9254–9274. https://doi.org/10.3390/su14159254

  65. Xanthos M, Dagli SS (1991) Compatibilization of polymer blends by reactive processing 31:929–935. https://doi.org/10.1002/pen.760311302

    Article  CAS  Google Scholar 

  66. Tomić NZ, Marinković AD (2020) Chapter 4 - Compatibilization of polymer blends by the addition of graft copolymers. In: AR A, Thomas S (eds) Compatibilization of polymer blends, Elsevier, pp 103–144. https://doi.org/10.1016/C2017-0-03891-0

  67. Van Puyvelde P, Velankar S, Moldenaers P (2001) Rheology and morphology of compatibilized polymer blends. Curr Opin Colloid Interface Sci 6:457–463. https://doi.org/10.1016/S1359-0294(01)00113-3

    Article  Google Scholar 

  68. Luna CBB, do Nascimento EP, Siqueira DD, Soares BG, Agrawal P, de Mélo TJA, Araújo EM (2022) Tailoring nylon 6/acrylonitrile-butadiene-styrene nanocomposites for application against electromagnetic interference: evaluation of the mechanical, thermal and electrical behavior, and the electromagnetic shielding efficiency. Int J Mol Sci 23:9020–9043. https://doi.org/10.3390/ijms23169020

  69. Oliveira ADd, Larocca NM, Pessan LA (2011) Efeito da sequência de mistura nas propriedades de blendas PA6/ABS compatibilizadas com o copolímero SMA. Polímeros 21:27–33. https://doi.org/10.1590/S0104-14282011005000010

  70. Luna CBB, da Silva Barbosa Ferreira E, Siqueira DD, Araújo EM, do Nascimento EP, Medeiros ES, de Mélo TJA (2022) Electrical nanocomposites of PA6/ABS/ABS-MA reinforced with carbon nanotubes (MWCNTf) for antistatic packaging. Polym Compos 43:3639–3658. https://doi.org/10.1002/pc.26643

  71. Arman Alim AA, Baharum A, Mohammad Shirajuddin SS, Anuar FH (2023) Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a compatibilizer on the phase morphology, mechanical and thermal properties. Polymers 15:261–285. https://doi.org/10.3390/polym15020261

  72. Grassi VG, Forte MMC, Dal Pizzol MF (2001) Aspectos Morfológicos e Relação Estrutura-Propriedades de Poliestireno de Alto Impacto. Polímeros 11:158–168. https://doi.org/10.1590/S0104-14282001000300016

  73. Heino M, Kirjava J, Hietaoja P, Aseppala J (1997) Compatibilization of polyethylene terephthalate/polypropylene blends with styrene–ethylene/butylene–styrene (SEBS) block copolymers. J Appl Polym Sci 65:241–249. https://doi.org/10.1002/(SICI)1097-4628(19970711)65:2<241::AID-APP4>3.0.CO;2-O

  74. Luna CBB, da Silva DF, Araújo EM, de Mélo TJA, de Oliveira T. Bezerra E, Siqueira DD, de Oliveira AD (2019) Blends of Polystyrene/Shoes Waste (SBRr): influence of mixture sequence and compatibilizer. Macromol Symp 383:1800046. https://doi.org/10.1002/masy.201800046

  75. Bello V, Mattei G, Mazzoldi P, Vivenza N, Gasco P, Idee JM, Robic C, Borsella E (2010) Transmission electron microscopy of lipid vesicles for drug delivery: comparison between positive and negative staining. Microsc Microanal 16:456–461. https://doi.org/10.1017/s1431927610093645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank UFCG, for its laboratory infrastructure, CAPES (Coordination for the Improvement of Higher Education Development), CNPq (National Council for Scientific and Technological Development), FAPESQ (Research Support Foundation of the State of Paraiba) and Borrachas SK for the natural rubber donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Antônio dos Santos Filho.

Ethics declarations

Conflict of interest

There is no conflict of interest and all authors have agreed with this submission and they are aware of the content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Filho, E.A., Luna, C.B.B., Ferreira, E.d.B. et al. Production of PLA/NR blends compatibilized with EE-g-GMA and POE-g-GMA: an investigation of mechanical, thermal, thermomechanical properties and morphology. J Polym Res 30, 132 (2023). https://doi.org/10.1007/s10965-023-03504-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03504-0

Keywords

Navigation