Skip to main content
Log in

Feasibility of Manufacturing Disposable Cups using PLA/PCL Composites Reinforced with Wood Powder

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Use of fiber reinforced composites derived from renewable sources has increased in recent years, aiming at a balance between sustainability and technological development. This research sought to develop poly (lactic acid) (PLA)/poly (ε-caprolactone) (PCL) composites using wood powder (WP) as reinforcement. The composites were initially prepared in a co‐rotational twin‐screw extruder, and the extruded granules were then molded by injection. Mechanical properties (impact, traction, Shore D hardness), heat deflection temperature (HDT), differential scanning calorimetry, contact angle, and analysis with scanning electron microscopy were evaluated. ANSYS® computer simulation for mechanical performance of the materials was used to assess the performance of disposable cups. Impact strength for PLA/PCL bioblend and PLA/PCL/WP composites was higher than neat PLA. In addition, Shore D hardness, elongation at break, and HDT were on the same level as PLA, indicating that high WP concentrations did not severely compromise these properties. However, losses were observed in elastic modulus and tensile strength, and the PLA/PCL/WP composites increased the interaction with water, as reflected in the contact angle. From a practical standpoint, and as verified in the simulation, mechanical performance of the composites was satisfactory for the manufacture of disposable cups. The results are valuable for the area of recycling since it is possible to reuse and add value to a discarded material, thereby reducing costs and promoting sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Luna CBB, Siqueira DD, Ferreira ESB, Silva WA, Nogueira JAS, Araújo EM (2020) From disposal to technological potential: reuse of polypropylene waste from industrial containers as a polystyrene impact modifier. Sustainability 12(13):5272–5291

    Article  CAS  Google Scholar 

  2. Okan M, Aydin HM, Barsbay M (2019) Current approaches to waste polymer utilization and minimization: a review. J Chem Technol Biotechnol 94(1):8–21

    Article  CAS  Google Scholar 

  3. Camargo RV, Saron C (2020) Mechanical–chemical recycling of low-density polyethylene waste with polypropylene. J Polym Environ 28(12):794–802

    Article  CAS  Google Scholar 

  4. Valerio O, Muthuraj R, Codou A (2020) Strategies for polymer to polymer recycling from waste: current trends and opportunities for improving the circular economy of polymers in South America. Curr Opin Green Sustain Chem. https://doi.org/10.1016/j.cogsc.2020.100381

    Article  Google Scholar 

  5. Luna CBB, Siqueira DD, Araújo EM, Wellen RMR (2019) Tailoring PS/PPrecycled blends compatibilized with SEBS. Evaluation of rheological, mechanical, thermomechanical and morphological characters. Mater Res Express 6(7):075316

    Article  CAS  Google Scholar 

  6. Bahrami B, Jafari P (2020) Paper recycling, directions to sustainable landscape. Int J Environ Sci Technol 17(4):371–382

    Article  Google Scholar 

  7. Taušová M, Mihaliková E, Čulková K, Stehlíková B, Tauš P, Kudelas D, Štrba Ľ (2019) Recycling of communal waste: current state and future potential for sustainable development in the EU. Sustainability 11(10):2904

    Article  Google Scholar 

  8. Siqueira DD, Luna CBB, Ferreira ESB, Araújo EM, Wellen RMR (2020) Tailored PCL/Macaíba fiber to reach sustainable biocomposites. J Mater Res Technol 9(5):9691–9708

    Article  CAS  Google Scholar 

  9. Grillo CC, Saron C (2020) Wood-plastic from Pennisetum Purpureum fibers and recycled low-density polyethylene. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1764436

    Article  Google Scholar 

  10. Oliveira TA, Mota IO, Mousinho FEP, Barbosa R, Carvalho LH, Alves TS (2019) Biodegradation of mulch films from poly(butylene adipate co-terephthalate), carnauba wax, and sugarcane residue. J Appl Polym Sci 136(47):48240

    Article  CAS  Google Scholar 

  11. Brito GF, Agrawal P, Araújo EM, Mélo TJA (2012) Biopolímeros, polímeros biodegradáveis e polímeros verdes. Rev Eletrôn Mater Process 6(2):127–139

    Google Scholar 

  12. Luna CBB, Siqueira DD, Ferreira ESB, Araújo EM, Wellen RMR (2019) Reactive compatilization of PCL/WP upon addition of PCL-MA. Smart option for recycling industry. Mater Res Express 6(12):125317

    Article  CAS  Google Scholar 

  13. Santana L, Alves JL, Netto ACS, Merlini C (2018) A comparative study between PETG and PLA for 3D Printing through thermal, chemical and mechanical characterization. Matéria (Rio J.) 23(4):e-12267

    CAS  Google Scholar 

  14. Silva MC, Oliveira SV, Araújo EM (2014) Propriedades mecânicas e térmicas de sistemas de PLA e PBAT/PLA. Rev Eletrôn Mater Process 9(2):112–117

    Google Scholar 

  15. Brito GF, Agrawal P, Araújo EM, Melo TJA (2012) Toughening of polylactide by melt blending with an (ethylene/methyl acrylate/glycidyl methacrylate) terpolymer. Polímeros 22(2):164–169

    Article  CAS  Google Scholar 

  16. Jeon JS, Han DH, Shin BY (2018) Improvements in the rheological properties, impact strength, and the biodegradability of PLA/PCL blend compatibilized by electron-beam irradiation in the presence of a reactive agent. Adv Mater Sci Eng 1(1):1–8

    Article  CAS  Google Scholar 

  17. Siqueira DD, Luna CBB, Morais DDS, Araújo EM, França DC, Wellen RMR (2018) Efeito das variáveis reacionais na síntese de um polímero biodegradável funcionalizado: PCL-g-MA. Matéria (Rio J) 23(4):e-12252

    Google Scholar 

  18. Ostafinska A, Fortelny I, Nevoralova M, Hodan J, Kredatusova J, Slouf M (2015) Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv 120(5):98971–98982

    Article  CAS  Google Scholar 

  19. Rao RU, Venkatanarayana B, Suman KNS (2019) Enhancement of mechanical properties of PLA/PCL (80/20) blend by reinforcing with MMT nanoclay. Mater Today Proc 18(1):85–97

    Google Scholar 

  20. Kotik HG (2019) Fibras naturais e compósitos reforçados com fibras naturais: a motivação para sua pesquisa e desenvolvimento. Matéria (Rio J) 24(3):e-12477

    Article  CAS  Google Scholar 

  21. Farina MZ, Soares TE, Chilomer SK, Pezzin APT, Silva DAK (2012) Análise da aplicação de resíduos do corte de palmito pupunha (Bactris gasipaes H.B.K.) em compósitos de matriz poliéster com diferentes proporções. Rev Eletrôn Mater Process 7(2):131–138

    Google Scholar 

  22. Csizmadia R, Faludi G, Renner K, Móczó J, Pukánszky B (2013) PLA/wood biocomposites: improving composite strength by chemical treatment of the fibers. Compos A Appl Sci Manuf 53(10):46–53

    Article  CAS  Google Scholar 

  23. Ferreira ESB, Luna CBB, Araújo EM, Siqueira DD, Wellen RMR (2019) Polypropylene/wood powder composites: evaluation of PP viscosity in thermal, mechanical, thermomechanical, and morphological characters. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705719880958

    Article  Google Scholar 

  24. Landim APM, Bernardo CO, Martins IBA, Franscisco MR, Santos MB, Melo NR (2016) Sustainability concerning food packaging in Brazil. Polímeros 26(1):82–92

    Article  Google Scholar 

  25. Ecycle. Disposable cup: impacts and alternatives. https://www.ecycle.com.br/3475-copo-descartavel.html. Accessed 07 de August de 2020.

  26. Correa CA, Fonseca CNP, Neves S, Razzino CA, Júnior EH (2003) Wood-plastic composites. Polímeros 13(3):154–165

    Article  CAS  Google Scholar 

  27. Ferreira ESB, Luna CBB, Araújo EM, Siqueira DD, Wellen RMR (2020) Polypropylene/wood powder/ethylene propylene diene monomer rubber-maleic anhydride composites: effect of PP melt flow index on the thermal, mechanical, thermomechanical, water absorption, and morphological parameters. Polymer Compos. https://doi.org/10.1002/pc.25841

    Article  Google Scholar 

  28. Riegel I, Moura ABD, Morisso FDP, Mello FS (2008) Thermogravimetric analysis of the pyrolysis of Acacia Mearnssi de Wind Harvested in Rio Grande do Sul. Brazil. Revista Árvore 32(3):533–543

    Article  Google Scholar 

  29. Garcia DP, Caraschi JC, Ventorim G (2016) Thermal decomposition of wood pellets by TGA. Holos 32(1):327–339

    Article  Google Scholar 

  30. Poletto M (2016) Thermal degradation and morphological aspects of four wood species used in lumber industry. Rev Árvore 40(5):941–948

    Article  CAS  Google Scholar 

  31. Becker D, Kleinschmidt AC, Balzer PS, Soldi V (2011) nfluência da sequência de mistura do PP-MA nas propriedades dos compósitos de PP e fibra de bananeira. Polímeros 21(1):7–12

    Article  CAS  Google Scholar 

  32. Ribeiro VF, Júnior NSD, Riegel IC (2012) Estudo da recuperação das propriedades de poliestireno de alto impacto (HIPS) através da incorporação de borracha termoplástica tipo estireno-butadieno-estireno (SBS). Polímeros 22(2):186–192

    Article  CAS  Google Scholar 

  33. Fernandes CN, Pinto ICMS, Saraiva RLP, Júnior CPA, Cabral AEB, Rosa MF (2019) Painéis de partículas elaborados do mesocarpo do dendê como alternativa ao MDF utilizado na construção civil. Eng Sanit Ambient 24(1):169–217

    Article  Google Scholar 

  34. Poletto M, Zattera AJ, Santana RMC (2012) Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci 126(1):337–344

    Article  CAS  Google Scholar 

  35. Miranda CS, Fiuza RP, Carvalho RF, José NM (2015) Efeito dos tratamentos superficiais nas propriedades do bagaço da fibra de piaçava. Quim Nova 38(2):161–165

    CAS  Google Scholar 

  36. Chaiwutthinan P, Chauyjulji S, Thipkham N, Kowalski CP, Boonmahitthisud A (2019) Poly(lactic acid)/ethylene vinyl acetate copolymer blend composites with wood flour and wollastonite: physical properties, morphology, and biodegradability. J Vinyl Add Tech 25(4):313–327

    Article  CAS  Google Scholar 

  37. Urquijo J, Echevarría GG, Eguiazába JI (2015) Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. J Appl Polym Sci 132(41):42641

    Article  CAS  Google Scholar 

  38. Poletto M (2016) Effect of styrene maleic anhydride on physical and mechanical properties of recycled polystyrene wood flour composites. Maderas Ciencia Tecnol 18(4):533–542

    CAS  Google Scholar 

  39. Gomes JW, Godoi GS, Souza LGM, Souza LGVM (2017) Absorção de água e propriedades mecânicas de compósitos poliméricos utilizando resíduos de MDF. Polímeros 27(1):48–55

    Article  Google Scholar 

  40. Zulkifli NI, Samat N, Anuar H, Zainuddin N (2015) Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites. Mater Des 69(3):114–123

    Article  CAS  Google Scholar 

  41. França DC, Almeida TG, Abels G, Canedo EL, Carvalho LH, Wellen RMR, Haag K, Koschek K (2019) Tailoring PBAT/PLA/Babassu films for suitability of agriculture mulch application. J Nat Fibers 16(7):933–943

    Article  CAS  Google Scholar 

  42. Poletto M, Dettenborn J, Zeni M, Zattera AJ (2011) Characterization of composites based on expanded polystyrene wastes and wood flour. Waste Manage 31(4):779–784

    Article  CAS  Google Scholar 

  43. Poletto M, Zattera AJ (2017) Mechanical and dynamic mechanical properties of polystyrene composites reinforced with cellulose fibers: coupling agent effect. J Thermoplast Compos Mater 30(9):1242–1254

    Article  CAS  Google Scholar 

  44. Chauyjulji S, Wongwaiwattanakul C, Chaiwutthinan P, Prasassarakich P (2017) Biodegradable poly(lactic acid)/poly(butylene succinate)/wood flour composites: physical and morphological properties. Polym Compos 38(12):2841–2851

    Article  CAS  Google Scholar 

  45. Mullapudi SS, Pandey K, Maiti SN, Saha S (2018) PLA/EVA/Teak Wood Flour biocomposites for packaging application: evaluation of mechanical performance and biodegradation properties. J Packag Technol Res 2(80):191–201

    Article  Google Scholar 

  46. Araújo JP, Silva RC, Lima JCC, Agrawal P, Mélo TJA (2016) Mechanical and thermal behavior of PLA/PEgAA blends. Macromol Symposia 367(1):82–89

    Article  CAS  Google Scholar 

  47. Cavalcanti SN, Alves AM, Agrawal P, Silva MP, Araújo APM, Mélo TJA (2016) Effect of the content of organophilic clays and impact modifier on the mechanical properties of poly(lactic acid) PLA biocomposites. Macromol Symposia 367(1):76–81

    Article  CAS  Google Scholar 

  48. Brito GF, Agrawal P, Araújo EM, Mélo TJA (2013) Effect of a compatibilizer in the blend organoclay PLA/terpolymer (ethylene/methyl acrylate/glycidyl methacrylate). Polímeros 23(4):531–537

    Article  CAS  Google Scholar 

  49. Siqueira DD, Luna CBB, Araújo EM, Ferreira ESB, Wellen RMR (2019) Biocomposites based on PCL and macaiba fiber Detailed characterization of main properties. Mater Res Express 6(9):095335

    Article  CAS  Google Scholar 

  50. Morais DDS, França DC, Carvalho LH, Wellen RMR, Oliveira AD, Melo TJA (2019) Tayloring PS/PCL blends: characteristics of processing and properties. REM Int Eng J 72(1):87–95

    Article  Google Scholar 

  51. Bai H, Xiu H, Gao J, Deng H, Zhang Q, Yang M, Fu Q (2012) Tailoring impact toughness of poly(L-lactide)/poly(epsilon-caprolactone) (PLLA/PCL) blends by controlling crystallizatior of PLLA matrix. ACS Appl Mater Interfaces 4(2):897–905

    Article  CAS  PubMed  Google Scholar 

  52. Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q (2013) Toughening of poly(l-lactide) with poly(ε-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer 54(19):5257–5266

    Article  CAS  Google Scholar 

  53. Xie L, Grueneberg T, Steuernagel L, Ziegman G, Militz H (2010) Influence of particle concentration and type on flow, thermal, and mechanical properties of wood-polypropylene composites. J Reinf Plast Compos 29(13):1940–1951

    Article  CAS  Google Scholar 

  54. Vianna WL, Correa CA, Razzino CA (2004) The effects of the high impact polystyrene morphology on the properties of wood-plastic composites. Polímeros 14(5):339–348

    Article  CAS  Google Scholar 

  55. Chavalitpanya K, Phattanarudee S (2013) Poly(lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Proc 34(1):542–548

    Article  CAS  Google Scholar 

  56. Mei LH, Oliveira N (2017) Characterization of composite polymeric biodegradable using Poly (ε-caprolactone) and coffee grounds. Polímeros 27(1):99–109

    Article  Google Scholar 

  57. Agrawal P, Araújo APM, Lima JCC, Cavalcanti SN, Freitas DMG, Farias GMG, Ueki MM, Mélo TJA (2019) Rheology, mechanical properties and morphology of poly(lactic acid)/ethylene vinyl acetate blends. J Polym Environ 27(4):1439–1448

    Article  CAS  Google Scholar 

  58. Ferreira LAS, Pessan LA, Júnior EH (1997) Comportamento mecânico e termo-mecânico de blendas poliméricas PBT/ABS. Polímeros 7(1):67–72

    Article  CAS  Google Scholar 

  59. Zhang Q, Lu W, Zhou L, Zhang D, Cai H, Lin X (2019) Tensile and flammability characterizations of corn straw slagging/high-density polyethylene composites. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705719830459

    Article  Google Scholar 

  60. Ferreira ESB, Luna CBB, Araújo EM, Siqueira DD, Wellen RMR (2020) Polypropylene/wood powder/ethylene propylene diene monomer rubber-maleic anhydride composites: effect of PP melt flow index on the thermal, mechanical, thermomechanical, water absorption, and morphological parameters. Polym Compos. https://doi.org/10.1002/pc.25841

    Article  Google Scholar 

  61. Ali JB, Musa AB, Danladi A, Bukhari MM, Nyakuma BB (2020) Physico-mechanical properties of unsaturated polyester resin reinforced maize cob and jute fiber composites. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1841062

    Article  Google Scholar 

  62. Ayrilmis N, Tasdemir M, Akbulut T (2017) Water absorption and mechanical properties of PP/HIPS hybrid composites filled with wood flour. Polym Compos 38(5):863–869

    Article  CAS  Google Scholar 

  63. Schneider AC, Mendonça MJ, Rodrigues RB, Busato PMR, Camilotti V (2016) Influence of three modes of curing on the hardness of three composites. Polímeros 26(1):37–42

    Article  Google Scholar 

  64. Takemori MT (1979) Towards an understanding of the heat distortion temperature of thermoplastics. Polym Eng Sci 19(15):1104–1109

    Article  CAS  Google Scholar 

  65. Rusayyis MAB, Schiraldi DA, Maia J (2018) Property/morphology relationships in SEBS-compatibilized HDPE/poly(phenylene ether) blends. Macromolecules 51(16):6513–6523

    Article  CAS  Google Scholar 

  66. Luna CBB, Silva DF, Araújo EM, Mélo TJA, Oliveira AD (2016) Efeito dos agentes de compatibilização SBS e SEBS-MA no desempenho de misturas de poliestireno/resíduo de borracha de SBR. Matéria (Rio J) 21(3):632–646

    Article  CAS  Google Scholar 

  67. Santos EB, Passador FR, Montagna LS (2020) Influência de fatores ambientais nas propriedades mecânicas de biocompósitos de PLA reforçados com fibra de coco e borra de café. Tecnológica 24(1):92–102

    Google Scholar 

  68. Santos WRG, Brito MKT, Lima AGB (2019) Study of the moisture absorption in polymer composites reinforced with vegetal fiber using Langmuir’s model. Mater Res 22(1):e20180848

    Article  CAS  Google Scholar 

  69. Zahari WZW, Badri RNRL, Ardyananta H, Kurniawan H, Nor FM (2015) Mechanical properties and water absorption behavior of polypropylene/Ijuk fiber composite by using silane treatment. Proc Manuf 2(1):573–578

    Google Scholar 

  70. Silva CC, Júnior RCSF, Ford ETLC, Dantas CM, Santos JKD, Aquino EMF (2018) Mechanical behavior and water absorption in sisal/glass hybrid composites. Matéria (Rio J) 23(4):e-12246

    Google Scholar 

  71. Dhakal HN, Zhang ZY, Richardson MO (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67(7–8):1674–1683

    Article  CAS  Google Scholar 

  72. Araújo JP, Agrawal P, Mélo TJA (2015) Blendas PLA/PEgAA: Avaliação da reatividade entre os polímeros e da concentração de PEgAA nas propriedades e na morfologia. Rev Eletrôn Mater Process 10(3):118–127

    Google Scholar 

  73. Di Lorenzo ML, Rubino P, Cocca M (2013) Miscibility and properties of poly (l-lactic acid)/poly (butylene terephthalate) blends. Eur Polymer J 49(10):3309–3317

    Article  CAS  Google Scholar 

  74. Rabello MS, Wellen RMR (2008) Estudo da cristalização a frio do poli (tereftalato de etileno) (PET) para produção de embalagens. Rev Eletrôn Mater Process 3(2):01–09

    Google Scholar 

  75. Mohapatra AK, Mohanty S, Nayak S (2012) Poly (lactic acid) and layered silicate nanocomposites prepared by melt mixing: thermomechanical and morphological properties. Polym Compos 33(12):2095–2104

    Article  CAS  Google Scholar 

  76. Fukushima K, Tabuani D, Camino G (2009) Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng C 29(4):1433–1441

    Article  CAS  Google Scholar 

  77. Nascimento UA, Timóteo GAV, Rabello MS (2013) Efeito de plastificantes à base de poliisobutenos nas propriedades físicas e mecânicas do polipropileno. Polímeros 23(2):257–261

    Article  CAS  Google Scholar 

  78. Machado MLC, Pereira NC, Miranda LF, Terence MC, Pradella JGC (2010) Estudo das propriedades mecânicas e térmicas do polímero poli-3-hidroxibutirato (PHB) e de compósitos PHB/Pó de madeira. Polímeros 20(1):65–71

    Article  CAS  Google Scholar 

  79. Goncalves SPC, Campos A, Martins SMM (2011) Influência da geometria e umidade de colunas de solo na biodegradação de filmes de PCL. Polímeros 21(2):107–110

    Article  CAS  Google Scholar 

  80. França DC, Morais DDS, Bezerra EB, Araújo EM, Wellen RMR (2018) Photodegradation mechanisms on poly(ε-caprolactone) (PCL). Mater Res 21(5):e20170837

    Article  CAS  Google Scholar 

  81. Pereira RB, Morales AR (2014) Study of mechanical and thermal behavior of PLA modified with nucleating additive and impact modifier. Polímeros 24(2):198–202

    Article  CAS  Google Scholar 

  82. Gonçalves, J. C. L. Otimização estrutural topológica com refino de malha adaptativo isotrópico. Doctoral thesis, Federal University of Paraná, Curitiba, 2016

  83. Associação Brasileira de Normas Técnicas. NBR 14865: Disposable thermoformed plastic cups. 2012.

Download references

Acknowledgements

The authors thank UFCG for the infrastructure of the laboratories, National Council for Scientific and Technological Development—CNPq, Coordination for the Improvement of Higher Education Personnel (CAPES) and the national fund for the development of education (FNDE) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallisson Alves da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 953 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, W.A., Luna, C.B.B., de Melo, J.B.C.A. et al. Feasibility of Manufacturing Disposable Cups using PLA/PCL Composites Reinforced with Wood Powder. J Polym Environ 29, 2932–2951 (2021). https://doi.org/10.1007/s10924-021-02076-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02076-8

Keywords

Navigation