Skip to main content
Log in

Preparation of stearic acid/halloysite intercalation compound and their reinforcement for styrene butadiene rubber composite

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Halloysite nanotubes (HNTs) are not only promising as reinforcing fillers for rubber materials but also have potential for storing stearic acid (SA), an important sulfurization agent. In this study, SA/HNT intercalation compounds were prepared by a secondary intercalation method to improve the mechanical properties of styrene butadiene rubber (SBR) composites. The intercalation compounds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetry. SA molecules successfully intercalated into the interlayer of the HNTs, with d001 increasing from 0.72 to 3.89 nm, and the intercalation rate of SA/HNTs reached 89.6%. The intercalation compound modified the processing properties and significantly improved the mechanical parameters of the filled SBR composites. The tensile and tear strengths of the obtained composites were improved by 454.1% and 193.5%, respectively, compared to those of the raw rubber material. The crosslinking density of the filled composites gradually increased with increasing filler content. SEM and TEM images indicated that the SA/HNT intercalation compound was physically dispersed in the SBR matrix. Further, many nanotubes exhibited a bending phenomenon caused by processing. The reinforcement effect of the intercalation compound is ascribed to its physical dispersion in the rubber matrix, which restricts rubber chain motion via trapping of the rubber chains and strong interactions between the rubber chains and SA functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lin J, Luo C, Zhang Z, Yang W, Xing Z, He S, Bian X (2018) Properties of Epoxy Resin Composites Filled with KH560 Modified Halloysite Nanotubes. 2018 IEEE 2nd International Electrical and Energy Conference (CIEEC) 617–620. https://doi.org/10.1109/cieec.2018.8745935

  2. Akbari V, Jouyandeh M, Paran SMR, Ganjali MR, Abdollahi H, Vahabi H, Saeb MR (2020) Effect of surface treatment of halloysite nanotubes (HNTs) on the kinetics of epoxy resin cure with amines. Polymers 12(4):930. https://doi.org/10.3390/polym12040930

    Article  CAS  PubMed Central  Google Scholar 

  3. Cavallaro G, Milioto S, Lazzara G (2020) Halloysite nanotubes: interfacial properties and applications in cultural heritage. Langmuir 36(14):3677–3689. https://doi.org/10.1021/acs.langmuir.0c00573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karami Z, Jazani OM, Navarchian AH, Karrabi M, Vahabi H, Saeb MR (2019) Well-cured silicone/halloysite nanotubes nanocomposite coatings. Prog Org Coat 129:357–365. https://doi.org/10.1016/j.porgcoat.2019.01.029

    Article  CAS  Google Scholar 

  5. Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250. https://doi.org/10.1002/adma.201502341

    Article  CAS  PubMed  Google Scholar 

  6. Dulebová Ľ, Glogowska K, Hájek J, Fic J (2018) The effect of adding halloysite nanotubes as filler on the mechanical properties of low-density polyethylene. Mater Sci Forum 919:144–151. https://doi.org/10.4028/www.scientific.net/msf.919.144

    Article  Google Scholar 

  7. Jelić A, Marinković A, Sekulić M, Dikić S, Ugrinović V, Pavlović V, Putić S (2021) Design of halloysite modification for improvement of mechanical properties of the epoxy based nanocomposites. Polym Compos 42(5):2180–2192. https://doi.org/10.1002/pc.25967

    Article  CAS  Google Scholar 

  8. Ahamad A, Kumar P (2020) Effect of reinforcing ability of halloysite nanotubes in styrene-butadiene rubber nanocomposites. Compos Commun 22:100440. https://doi.org/10.1016/j.coco.2020.100440

    Article  Google Scholar 

  9. Du M, Guo B, Wan J, Zou Q, Jia D (2010) Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. J Polym Res 17(1):109–118. https://doi.org/10.1007/s10965-009-9296-5

    Article  CAS  Google Scholar 

  10. Bai S, Sun X, Wu M, Shi X, Chen X, Yu X, Zhang Q (2020) Effects of pure and intercalated halloysites on thermal properties of phthalonitrile resin nanocomposites. Polym Degrad Stab 177:109192. https://doi.org/10.1016/j.polymdegradstab.2020.109192

    Article  CAS  Google Scholar 

  11. Zheng Y, Wang X, Wu G (2020) Chemical modification of carbon fiber with diethylenetriaminepentaacetic acid/halloysite nanotube as a multifunctional interfacial reinforcement for silicone resin composites. Polym Adv Technol 31(3):527–535. https://doi.org/10.1002/pat.4793

    Article  CAS  Google Scholar 

  12. Du M, Guo B, Jia D (2006) Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). Eur Polym J 42(6):1362–1369. https://doi.org/10.1016/j.eurpolymj.2005.12.006

    Article  CAS  Google Scholar 

  13. Zhang M, Zhao W, Zhang X, Li Z, Yu L, Li X, Zhang Z (2021) Nonfluoride-modified halloysite nanotube-based hybrid: potential for acquiring super-hydrophobicity and improving flame retardancy of epoxy resin. J Nanostruct Chem 11(3):353–366. https://doi.org/10.1007/s40097-020-00371-9

    Article  CAS  Google Scholar 

  14. Deng Y, White GN, Dixon JB (2002) Effect of structural stress on the intercalation rate of kaolinite. J Colloid Interface Sci 250(2):379–393. https://doi.org/10.1006/jcis.2001.8208

    Article  CAS  PubMed  Google Scholar 

  15. Frost RL, Kristof J, Paroz GN, Kloprogge JT (1998) Molecular structure of dimethyl sulfoxide intercalated kaolinites. J Phys Chem B 102(43):8519–8532. https://doi.org/10.1021/jp982035f

    Article  CAS  Google Scholar 

  16. Fu Y, Zhao D, Yao P, Wang W, Zhang L, Lvov Y (2015) Highly aging-resistant elastomers doped with antioxidant-loaded clay nanotubes. ACS Appl Mater Interfaces 7(15):8156–8165. https://doi.org/10.1021/acsami.5b00993

    Article  CAS  PubMed  Google Scholar 

  17. De Falco A, Goyanes S, Rubiolo GH, Mondragon I, Marzocca A (2007) Carbon nanotubes as reinforcement of styrene–butadiene rubber. Appl Surf Sci 254(1):262–265. https://doi.org/10.1016/j.apsusc.2007.07.049

    Article  CAS  Google Scholar 

  18. Zhang Y, Liu Q, Zhang Q, Lu Y (2010) Gas barrier properties of natural rubber/kaolin composites prepared by melt blending. Appl Clay Sci 50(2):255–259. https://doi.org/10.1016/j.clay.2010.08.006

    Article  CAS  Google Scholar 

  19. Flory PJ, Rehner J Jr (1943) Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J Chem Phys 11(11):512–520. https://doi.org/10.1063/1.1723791

    Article  CAS  Google Scholar 

  20. Tkach E, Bichaev M (2022) Properties of epoxy composites with halloysite nanotubes subjected to tensile testing. Proc FORM 2021:73–83. https://doi.org/10.1007/978-3-030-79983-0_8

    Article  Google Scholar 

  21. Xu T, Xin Y, Wang Y, Liao L, Li H, Ban J, Yang Y (2022) Simulation of β-dextranase from raw natural rubber to investigate structure and properties of natural rubber/halloysite composites. Polym Compos 43(2):798–810. https://doi.org/10.1002/pc.26411

    Article  CAS  Google Scholar 

  22. Kouser S, Prabhu A, Prashantha K, Nagaraja GK, D’souza JN, Navada KM, Manasa DJ (2022) Modified halloysite nanotubes with Chitosan incorporated PVA/PVP bionanocomposite films: Thermal, mechanical properties and biocompatibility for tissue engineering. Colloids Surf A 634:127941. https://doi.org/10.1016/j.colsurfa.2021.127941

    Article  CAS  Google Scholar 

  23. Li Y, Zhang Y, Zhang Y, Sun J, Wang Z (2017) Thermal behavior analysis of halloysite–dimethylsulfoxide intercalation complex. J Therm Anal Calorim 129(2):985–990. https://doi.org/10.1007/s10973-017-6258-8

    Article  CAS  Google Scholar 

  24. Zhang A, Zhang Y, Zhu Z (2019) Thermal properties of Halloysite nanotubes (HNTs) intercalation complexes-A review. E3S Web Conf 131:01055. https://doi.org/10.1051/e3sconf/201913101055

    Article  CAS  Google Scholar 

  25. Mahrez N, Bendenia S, Marouf-Khelifa K, Batonneau-Gener I, Khelifa A (2015) Improving of the adsorption capacity of halloysite nanotubes intercalated with dimethyl sulfoxide. Compos Interfaces 22(6):403–417. https://doi.org/10.1080/09276440.2015.1036581

    Article  CAS  Google Scholar 

  26. Wiewióra A (1969) Potassium acetate intercalation in kaolinite and its removal; effect of material characteristics. Proc Int Clay Conf 1:723–733

    Google Scholar 

  27. Zhang Y, Li Y, Zhang Y (2020) Preparation and intercalation structure model of halloysite-stearic acid intercalation compound. Appl Clay Sci 187:105451. https://doi.org/10.1016/j.clay.2020.105451

    Article  CAS  Google Scholar 

  28. Cheng H, Zhang S, Liu Q, Li X, Frost RL (2015) The molecular structure of kaolinite–potassium acetate intercalation complexes: a combined experimental and molecular dynamic simulation study. Appl Clay Sci 116:273–280. https://doi.org/10.1016/j.clay.2015.04.008

    Article  CAS  Google Scholar 

  29. Fujii K, Nakagaito AN, Takagi H, Yonekura D (2014) Sulfuric acid treatment of halloysite nanoclay to improve the mechanical properties of PVA/halloysite transparent composite films. Compos Interfaces 21(4):319–327. https://doi.org/10.1080/15685543.2014.876307

    Article  CAS  Google Scholar 

  30. Gârea SA, Ghebaur A, Constantin F, Iovu H (2011) New hybrid materials based on modified halloysite and unsaturated polyester resin. Polym-Plast Technol Eng 50(11):1096–1102. https://doi.org/10.1080/03602559.2011.557818

    Article  CAS  Google Scholar 

  31. Deng S, Zhang J, Ye L (2009) Halloysite–epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Compos Sci Technol 69(14):2497–2505. https://doi.org/10.1016/j.compscitech.2009.07.001

    Article  CAS  Google Scholar 

  32. Djomgoue P, Njopwouo D (2013) FT-IR spectroscopy applied for surface clays characterization. J Surf Eng Mater Adv Technol 3(04):275–282. https://doi.org/10.4236/jsemat.2013.34037

    Article  CAS  Google Scholar 

  33. Zich D, Zacher T, Darmo J, Szöcs V, Lorenc D, Janek M (2013) Far-infrared investigation of kaolinite and halloysite intercalates using terahertz time-domain spectroscopy. Vib Spectrosc 69:1–7. https://doi.org/10.1016/j.vibspec.2013.09.003

    Article  CAS  Google Scholar 

  34. Zhang R, Li Y, He Y, Qin D (2020) Preparation of iodopropynyl butycarbamate loaded halloysite and its anti-mildew activity. J Mater Res Technol 9(5):10148–10156. https://doi.org/10.1016/j.jmrt.2020.07.019

    Article  CAS  Google Scholar 

  35. Martens WN, Ding Z, Frost RL, Kristof J, Kloprogge JT (2002) Raman spectroscopy of hydrazine-intercalated kaolinite at 77, 298, 323, 343 and 358 k. J Raman Spectrosc 33(1):31–36. https://doi.org/10.1002/jrs.812

    Article  CAS  Google Scholar 

  36. Caglar B, Afsin B, Eren E, Tabak A, Cirak C, Cubuk O (2010) The spectral, structural and thermal characterizations of dimethyl sulphoxide, pyridine, Ethanol-amine and N-methyl formamide intercalated kaolinites. Z Naturforsch A 65(11):1009

    Article  Google Scholar 

  37. Zhang Y, Liu Q, Wu Z, Zheng Q, Cheng H (2012) Thermal behavior analysis of kaolinite–dimethylsulfoxide intercalation complex. J Therm Anal Calorim 110(3):1167–1172. https://doi.org/10.1007/s10973-011-2038-z

    Article  CAS  Google Scholar 

  38. Cheng H, Liu Q, Yang J, Zhang Q, Frost RL (2010) Thermal behavior and decomposition of kaolinite–potassium acetate intercalation composite. Thermochim Acta 503:16–20. https://doi.org/10.1016/j.tca.2010.02.014

    Article  CAS  Google Scholar 

  39. Costanzo PM, Giese RF (1986) Ordered halloysite: dimethylsulfoxide intercalate. Clays Clay Miner 34(1):105–107. https://doi.org/10.1346/ccmn.1986.0340115

    Article  CAS  Google Scholar 

  40. Joussein E, Petit S, Fialips CI, Vieillard P, Righi D (2006) Differences in the dehydration-rehydration behavior of halloysites: New evidence and interpretations. Clays Clay Miner 54(4):473–484. https://doi.org/10.1346/ccmn.2006.0540408

    Article  CAS  Google Scholar 

  41. Cheng H, Liu Q, Yang J, Frost RL (2010) Thermogravimetric analysis of selected coal-bearing strata kaolinite. Thermochim Acta 507:84–90. https://doi.org/10.1016/j.tca.2010.05.004

    Article  CAS  Google Scholar 

  42. Mei D, Zhang B, Liu R, Zhang H, Liu J (2011) Preparation of stearic acid/halloysite nanotube composite as form-stable PCM for thermal energy storage. Int J Energy Res 35(9):828–834. https://doi.org/10.1002/er.1874

    Article  CAS  Google Scholar 

  43. Frost RL, Kristof J, Horvath E, Kloprogge JT (1999) Deintercalation of dimethylsulphoxide intercalated kaolinites–a DTA/TGA and Raman spectroscopic study. Thermochim Acta 327(1–2):155–166. https://doi.org/10.1016/s0040-6031(98)00605-4

    Article  CAS  Google Scholar 

  44. Wang Y, Zhang H, Wu Y, Yang J, Zhang L (2005) Preparation and properties of natural rubber/rectorite nanocomposites. Eur Polym J 41(11):2776–2783. https://doi.org/10.1016/j.eurpolymj.2005.05.019

    Article  CAS  Google Scholar 

  45. Malas A, Pal P, Giri S, Mandal A, Das CK (2014) Synthesis and characterizations of modified expanded graphite/emulsion styrene butadiene rubber nanocomposites: Mechanical, dynamic mechanical and morphological properties. Compos B 58:267–274. https://doi.org/10.1016/j.compositesb.2013.10.028

    Article  CAS  Google Scholar 

  46. Mahrez N, Bessaha F, Marouf-Khelifa K, Coruh A, Khelifa A (2020) Performance and mechanism of interaction of crystal violet with organohalloysite. Desalin Water Treat 207:410–419. https://doi.org/10.5004/dwt.2020.26447

    Article  CAS  Google Scholar 

  47. Zhang Y, Liu Q, Zhang S, Zhang Y, Zhang Y, Liang P (2016) Characterization of kaolinite/styrene butadiene rubber composite: Mechanical properties and thermal stability. Appl Clay Sci 124:167–174. https://doi.org/10.1016/j.clay.2016.02.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation Project of China (52064040), the National Natural Science Foundation Project of China (11562015), the Natural Science Foundation of Inner Mongolia (2018MS05061).

Author information

Authors and Affiliations

Authors

Contributions

Writing, Visualization: Kaiyuan Xiao; Supervision, Funding acquisition: Yinmin Zhang; Software, Formal analysis: Yongfeng Zhang; Resources, Conceptualization: Yanbing Gong.

Corresponding authors

Correspondence to Yinmin Zhang or Yanbing Gong.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 304 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, K., Zhang, Y., Zhang, Y. et al. Preparation of stearic acid/halloysite intercalation compound and their reinforcement for styrene butadiene rubber composite. J Polym Res 29, 451 (2022). https://doi.org/10.1007/s10965-022-03275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03275-0

Keywords

Navigation