Skip to main content
Log in

Investigation on curing kinetics, water diffusion kinetics and thermo- mechanical properties of functionalized castor oil based epoxy copolymers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In pursuit to develop sustainable, eco-friendly and high-performance toughened epoxy materials, a green reactive monomer, epoxy methyl ricinoleate (EMR) was synthesized through transesterification of epoxidized castor oil (ECO). Both ECO and EMR were used as co-monomers with petro based epoxy resin at 10, 20, and 30% and cured with triethylenetetramine (TETA) to achieve toughened samples with moderate stiffness. Compared to neat epoxy, tensile strength of EPECO20 and EPEMR20 co-polymeric systems increased by 21.6% and 30% along with enhancement in impact strength to the tune of 24.4% and 39.4% respectively. Non-isothermal kinetic methods, Iso-conversional method and autocatalytic model were used to find curing kinetic parameters of the optimized EPECO and EPEMR copolymer system. The effects of ECO and EMR on curing kinetics and thermo-physical properties of TETA cured epoxy has been studied in order to control the curing reaction and achieve adequate properties for structural applications, which are not explored so far. The inclusion of ECO as copolymer resulted in the increase of activation energy (Ea) of curing by 10.9%, wherein EMR incorporation reduced the Ea value by 5% because of its low viscosity, better resin diffusion and reactivity. The water diffusion coefficient is increased with increase in bio-resin content and water absorption through these samples is found to be a reversible process. The dynamic mechanical analysis (DMA) showed a reduction in glass transition temperature (Tg) with the improved damping ability of copolymers due to segmental mobility of the flexible aliphatic chains of bio-resins. TGA study revealed the reduction in decomposition rate on addition of bio-monomers without much change in derivative peak temperature. These greener materials can find space in structural composites applications, being eco-friendly and sustainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: A review. J Ind Eng Chem 29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026

    Article  CAS  Google Scholar 

  2. Dagdag O, Berisha A, Safi Z et al (2020) Highly durable macromolecular epoxy resin as anticorrosive coating material for carbon steel in 3% NaCl: Computational supported experimental studies. J Appl Polym Sci 137:1–12. https://doi.org/10.1002/app.49003

    Article  CAS  Google Scholar 

  3. Dong Y, Zhou Q, Meng X et al (2019) Anti-H 2 S corrosion property of bipolar epoxy-resin coatings. Prog Org Coatings 130:66–74. https://doi.org/10.1016/j.porgcoat.2019.01.036

    Article  CAS  Google Scholar 

  4. Shioya M, Kuroyanagi Y, Ryu M, Morikawa J (2018) Analysis of the adhesive properties of carbon nanotube- and graphene oxide nanoribbon-dispersed aliphatic epoxy resins based on the Maxwell model. Int J Adhes Adhes 84:27–36. https://doi.org/10.1016/j.ijadhadh.2018.01.019

    Article  CAS  Google Scholar 

  5. Kilic U, Sherif MM, Ozbulut OE (2019) Tensile properties of graphene nanoplatelets/epoxy composites fabricated by various dispersion techniques. Polym Test 76:181–191. https://doi.org/10.1016/j.polymertesting.2019.03.028

    Article  CAS  Google Scholar 

  6. Liu S, Fan X, He C (2016) Improving the fracture toughness of epoxy with nanosilica-rubber core-shell nanoparticles. Compos Sci Technol 125:132–140. https://doi.org/10.1016/j.compscitech.2016.01.009

    Article  CAS  Google Scholar 

  7. Sahoo SK, Khandelwal V, Manik G (2018) Development of toughened bio-based epoxy with epoxidized linseed oil as reactive diluent and cured with bio-renewable crosslinker. Polym Adv Technol 29:565–574. https://doi.org/10.1002/pat.4166

    Article  CAS  Google Scholar 

  8. Sahoo SK, Khandelwal V, Manik G (2018) Renewable Approach to Synthesize Highly Toughened Bioepoxy from Castor Oil Derivative-Epoxy Methyl Ricinoleate and Cured with Biorenewable Phenalkamine. Ind Eng Chem Res 57:11323–11334. https://doi.org/10.1021/acs.iecr.8b02043

    Article  CAS  Google Scholar 

  9. Fu Q, Tan J, Han C et al (2020) Synthesis and curing properties of castor oil-based triglycidyl ether epoxy resin. Polym Adv Technol 31:2552–2560. https://doi.org/10.1002/pat.4982

    Article  CAS  Google Scholar 

  10. Sudha GS, Kalita H, Mohanty S, Nayak SK (2017) Biobased epoxy blends from epoxidized castor oil: Effect on mechanical, thermal, and morphological properties. Macromol Res 25:420–430. https://doi.org/10.1007/s13233-017-5063-3

    Article  CAS  Google Scholar 

  11. Jia PY, Bo CY, Zhang LQ et al (2015) Synthesis of castor oil based plasticizers containing flame retarded group and their application in poly (vinyl chloride) as secondary plasticizer. J Ind Eng Chem 28:217–224. https://doi.org/10.1016/j.jiec.2015.02.017

    Article  CAS  Google Scholar 

  12. Sahoo SK, Khandelwal V, Manik G (2018) Development of completely bio-based epoxy networks derived from epoxidized linseed and castor oil cured with citric acid. Polym Adv Technol 29:2080–2090. https://doi.org/10.1002/pat.4316

    Article  CAS  Google Scholar 

  13. Zhang Y, Li Y, Wang L et al (2017) Synthesis and Characterization of Methacrylated Eugenol as a Sustainable Reactive Diluent for a Maleinated Acrylated Epoxidized Soybean Oil Resin. ACS Sustain Chem Eng 5:8876–8883. https://doi.org/10.1021/acssuschemeng.7b01673

    Article  CAS  Google Scholar 

  14. Sahoo SK, Mohanty S, Nayak SK (2017) Mechanical, Thermal, and Interfacial Characterization of Randomly Oriented Short Sisal Fibers Reinforced Epoxy Composite Modified with Epoxidized Soybean Oil. J Nat Fibers 14:357–367. https://doi.org/10.1080/15440478.2016.1212757

    Article  CAS  Google Scholar 

  15. Sahoo SK, Khandelwal V, Manik G (2019) Synthesis and characterization of low viscous and highly acrylated epoxidized methyl ester based green adhesives derived from linseed oil. Int J Adhes Adhes 89:174–177. https://doi.org/10.1016/j.ijadhadh.2019.01.007

    Article  CAS  Google Scholar 

  16. Sbirrazzuoli N (2021) Model-free isothermal and nonisothermal predictions using advanced isoconversional methods. Thermochim Acta 697:178855. https://doi.org/10.1016/j.tca.2020.178855

    Article  CAS  Google Scholar 

  17. Vyazovkin S, Sbirrazzuoli N (1996) Mechanism and kinetics of epoxy-amine cure studied by differential scanning calorimetry. Macromolecules 29:1867–1873. https://doi.org/10.1021/ma951162w

    Article  CAS  Google Scholar 

  18. Sbirrazzuoli N, Mititelu-Mija A, Vincent L, Alzina C (2006) Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy-amine cures. Thermochim Acta 447:167–177. https://doi.org/10.1016/j.tca.2006.06.005

    Article  CAS  Google Scholar 

  19. Vyazovkin S, Burnham AK, Criado JM et al (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  CAS  Google Scholar 

  20. Borchardt HJ, Daniels F (1957) The Application of Differential Thermal Analysis to the Study of Reaction Kinetics. J Am Chem Soc 79:41–46. https://doi.org/10.1021/ja01558a009

    Article  CAS  Google Scholar 

  21. Li WC, Deng SP, Liu YG, Xuan L (2011) Reaction kinetics investigation of NVP in HPDLC gratings. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy Spectr Anal 31:1042–1046. https://doi.org/10.3964/j.issn.1000-0593(2011)04-1042-05

    Article  CAS  Google Scholar 

  22. Wang CS, Lin CH (2000) Novel phosphorus-containing epoxy resins. Part II: Curing kinetics Polymer (Guildf) 41:8579–8586. https://doi.org/10.1016/S0032-3861(00)00211-1

    Article  CAS  Google Scholar 

  23. Sourour S, Kamal MR (1976) Differential scanning calorimetry of epoxy cure: isothermal cure kinetics. Thermochim Acta 14:41–59. https://doi.org/10.1016/0040-6031(76)80056-1

    Article  CAS  Google Scholar 

  24. Sbirrazzuoli N, Girault Y, Elégant L (1995) The Málek method in the kinetic study of polymerization by differential scanning calorimetry. Thermochim Acta 249:179–187. https://doi.org/10.1016/0040-6031(95)90690-8

    Article  CAS  Google Scholar 

  25. Vyazovkin S, Burnham AK, Favergeon L et al (2020) ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta 689:178597. https://doi.org/10.1016/j.tca.2020.178597

    Article  CAS  Google Scholar 

  26. Holser RA (2008) Transesterification of epoxidized soybean oil to prepare epoxy methyl esters. Ind Crops Prod 27:130–132. https://doi.org/10.1016/j.indcrop.2007.06.001

    Article  CAS  Google Scholar 

  27. Koohikamali S, Tan CP, Ling TC (2012) Optimization of Sunflower Oil Transesterification Process Using Sodium Methoxide. Sci World J. https://doi.org/10.1100/2012/475027

    Article  Google Scholar 

  28. Sahoo SK, Mohanty S, Nayak SK (2015) Toughened bio-based epoxy blend network modified with transesterified epoxidized soybean oil: Synthesis and characterization. RSC Adv 5:13674–13691. https://doi.org/10.1039/c4ra11965g

    Article  CAS  Google Scholar 

  29. Sudha GS, Kalita H, Mohanty S, Nayak SK (2017) Castor oil modified by epoxidation, transesterification, and acrylation processes: Spectroscopic characteristics. Int J Polym Anal Charact 22:519–525. https://doi.org/10.1080/1023666X.2017.1334171

    Article  CAS  Google Scholar 

  30. Kavitha D, Chandrasekaran Murugavel S, Thenmozhi S (2021) Flame retarding cardanol based novolac-epoxy/rice husk composites. Mater Chem Phys 263:124225. https://doi.org/10.1016/j.matchemphys.2021.124225

    Article  CAS  Google Scholar 

  31. Kumar S, Samal SK, Mohanty S, Nayak SK (2017) Epoxidized soybean oil based epoxy blend cured with Anhydride based crosslinker Thermal and Mechanical Characterization Epoxidized soybean oil based epoxy blend cured with Anhydride based crosslinker Thermal and Mechanical Characterization. Nd Eng Chem Res 56(2):687–698. https://doi.org/10.1021/acs.iecr.6b03879

    Article  CAS  Google Scholar 

  32. Murias P, Byczyński Ł, Maciejewski H, Galina H (2015) A quantitative approach to dynamic and isothermal curing of an epoxy resin modified with oligomeric siloxanes. J Therm Anal Calorim 122:215–226. https://doi.org/10.1007/s10973-015-4703-0

    Article  CAS  Google Scholar 

  33. Zolghadr M, Zohuriaan-Mehr MJ, Shakeri A, Salimi A (2019) Epoxy resin modification by reactive bio-based furan derivatives: Curing kinetics and mechanical properties. Thermochim Acta 673:147–157. https://doi.org/10.1016/j.tca.2019.01.025

    Article  CAS  Google Scholar 

  34. Sahoo SK, Mohanty S, Nayak SK (2015) A study on effect of organo modified clay on curing behavior and thermo-physical properties of epoxy methyl ester based epoxy nanocomposite. Thermochim Acta 614:163–170. https://doi.org/10.1016/j.tca.2015.06.021

    Article  CAS  Google Scholar 

  35. Kumar S, Mohanty S, Nayak SK (2020) Nanocomposites of epoxidized soybean oil (ESO)-based epoxy (DGEBA) blends and clay platelets: cured with methylhexahydrophthalic anhydride crosslinker. J Macromol Sci Part A Pure Appl Chem 57:654–662. https://doi.org/10.1080/10601325.2020.1756318

    Article  CAS  Google Scholar 

  36. Liu T, Zhang S, Hao C et al (2019) Glycerol Induced Catalyst-Free Curing of Epoxy and Vitrimer Preparation. Macromol Rapid Commun 40:1–6. https://doi.org/10.1002/marc.201800889

    Article  CAS  Google Scholar 

  37. Sahoo SK, Mohanty S, Nayak SK (2015) Study of thermal stability and thermo-mechanical behavior of functionalized soybean oil modified toughened epoxy/organo clay nanocomposite. Prog Org Coatings 88:263–271. https://doi.org/10.1016/j.porgcoat.2015.07.012

    Article  CAS  Google Scholar 

  38. Zhao K, Wang J, Song X et al (2015) Curing kinetics of nanostructured epoxy blends toughened with epoxidized carboxyl-terminated liquid rubber. Thermochim Acta 605:8–15. https://doi.org/10.1016/j.tca.2015.02.007

    Article  CAS  Google Scholar 

  39. Lakho DA, Yao D, Cho K et al (2017) Study of the Curing Kinetics toward Development of Fast-Curing Epoxy Resins. Polym - Plast Technol Eng 56:161–170. https://doi.org/10.1080/03602559.2016.1185623

    Article  CAS  Google Scholar 

  40. Safarpour MA, Omrani A, Afsar S, Zare-Hossein-Abadi D (2011) Study of cure kinetics of epoxy/DDS/nanosized (SiO2/TiO2) system by dynamic differential scanning calorimetry. Polym Adv Technol 22:718–723. https://doi.org/10.1002/pat.1571

    Article  CAS  Google Scholar 

  41. Zheng T, Xi H, Wang Z et al (2020) The curing kinetics and mechanical properties of epoxy resin composites reinforced by PEEK microparticles. Polym Test 91:106781. https://doi.org/10.1016/j.polymertesting.2020.106781

    Article  CAS  Google Scholar 

  42. Achilias DS, Karabela MM, Varkopoulou EA, Sideridou ID (2012) Cure kinetics study of two epoxy systems with Fourier Tranform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). J Macromol Sci Part A Pure Appl Chem 49:630–638. https://doi.org/10.1080/10601325.2012.696995

    Article  CAS  Google Scholar 

  43. Zheng T, Wang X, Lu C et al (2019) Studies on curing kinetics and tensile properties of silica-filled phenolic amine/epoxy resin nanocomposite. Polymers (Basel). https://doi.org/10.3390/polym11040680

    Article  PubMed Central  Google Scholar 

  44. Auvergne R, Caillol S, David G et al (2014) Biobased thermosetting epoxy: Present and future. Chem Rev 114:1082–1115. https://doi.org/10.1021/cr3001274

    Article  CAS  PubMed  Google Scholar 

  45. Saad GR, Abd Elhamid EE, Elmenyawy SA (2011) Dynamic cure kinetics and thermal degradation of brominated epoxy resin-organoclay based nanocomposites. Thermochim Acta 524:186–193. https://doi.org/10.1016/j.tca.2011.07.014

    Article  CAS  Google Scholar 

  46. Shanmugharaj AM, Ryu SH (2012) Study on the effect of aminosilane functionalized nanoclay on the curing kinetics of epoxy nanocomposites. Thermochim Acta 546:16–23. https://doi.org/10.1016/j.tca.2012.07.026

    Article  CAS  Google Scholar 

  47. Sreenivasan VS, Rajini N, Alavudeen A, Arumugaprabu V (2015) Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: Effect of fiber length, fiber loading and chemical treatment. Compos Part B Eng 69:76–86. https://doi.org/10.1016/j.compositesb.2014.09.025

    Article  CAS  Google Scholar 

  48. Park S, Jin F, Lee J (2004) Synthesis and Thermal Properties of Epoxidized Vegetable Oil. Macromol Rapid Commun 25:724–727. https://doi.org/10.1002/marc.200300191

    Article  CAS  Google Scholar 

  49. Sahoo S, Kalita H, Mohanty S, Nayak SK (2017) Meticulous study on curing kinetics of green polyurethane-clay nanocomposite adhesive derived from plant oil: Evaluation of decomposition activation energy using TGA analysis. J Macromol Sci Part A Pure Appl Chem 54:819–826. https://doi.org/10.1080/10601325.2017.1336727

    Article  CAS  Google Scholar 

  50. Díez-Pascual AM, Díez-Vicente AL (2014) Epoxidized soybean Oil/ZnO biocomposites for soft tissue applications: Preparation and characterization. ACS Appl Mater Interfaces 6:17277–17288. https://doi.org/10.1021/am505385n

    Article  CAS  PubMed  Google Scholar 

  51. Gomaa MM, Hugenschmidt C, Dickmann M et al (2018) Crosslinked PVA/SSA proton exchange membranes: Correlation between physiochemical properties and free volume determined by positron annihilation spectroscopy. Phys Chem Chem Phys 20:28287–28299. https://doi.org/10.1039/c8cp05301d

    Article  CAS  PubMed  Google Scholar 

  52. Prasad V, Joseph MA, Sekar K (2018) Investigation of mechanical, thermal and water absorption properties of fl ax fi bre reinforced epoxy composite with nano TiO 2 addition. Compos Part A 115:360–370. https://doi.org/10.1016/j.compositesa.2018.09.031

    Article  CAS  Google Scholar 

  53. Chand P, Reddy CV, Venkat JG et al (2009) Thermogravimetric quantification of biodiesel produced via alkali catalyzed transesterification of soybean oil. Energy Fuels 23:989–992. https://doi.org/10.1021/ef800668u

    Article  CAS  Google Scholar 

  54. Mustata F, Nita T, Bicu I (2014) The curing reaction of epoxidized methyl esters of corn oil with Diels-Alder adducts of resin acids. the kinetic study and thermal characterization of crosslinked products. J Anal Appl Pyrolysis 108:254–264. https://doi.org/10.1016/j.jaap.2014.04.007

    Article  CAS  Google Scholar 

  55. Kumar S, Samal SK, Mohanty S, Nayak SK (2018) Bio-based tri-functional epoxy resin (TEIA) blend cured with anhydride (MHHPA) based cross-linker: Thermal, mechanical and morphological characterization. J Macromol Sci Part A Pure Appl Chem 55:496–506. https://doi.org/10.1080/10601325.2018.1470468

    Article  CAS  Google Scholar 

  56. Park H, Lee S, Kim Y et al (2007) Mechanical Properties and Microstructures of GFRP Rebar after Long-term Exposure to Chemical Environments. Polym Compos 15:403–408. https://doi.org/10.1177/2F096739110701500508

  57. Kumar R, Kumar K, Chandra B (2016) Composites : Part A Water absorption behavior, mechanical and thermal properties of nano TiO 2 enhanced glass fiber reinforced polymer composites. Compos Part A 90:736–747. https://doi.org/10.1016/j.compositesa.2016.09.003

    Article  CAS  Google Scholar 

  58. Taylor P, Tan SG, Chow WS (2010) Thermal Properties, Fracture Toughness and Water Absorption of Epoxy-Palm Oil Blends Thermal Properties, Fracture Toughness and Water Absorption of Epoxy-Palm Oil Blends. Polym Plast Technol Eng 49:900–907. https://doi.org/10.1080/03602551003682042

    Article  CAS  Google Scholar 

  59. Han SO, Drzal LT (2003) Water absorption effects on hydrophilic polymer matrix of carboxyl functionalized glucose resin and epoxy resin. Eur Polym J 39:1791–1799. https://doi.org/10.1016/S0014-3057(03)00099-5

    Article  CAS  Google Scholar 

  60. Speyer R (1993) Thermal analysis of materials. CRC Press Rat 87. https://doi.org/10.1201/9781482277425

  61. Chung KH, Wu CS, Malawer EG (1990) Glass transition temperatures of poly(methyl vinyl ether-co-maleic anhydride) (PMVEMA) and poly(methyl vinyl ether-co-maleic acid) (PMVEMAC) and the kinetics of dehydration of PMVEMAC by thermal analysis. J Appl Polym Sci 41:793–803. https://doi.org/10.1002/app.1990.070410326

    Article  CAS  Google Scholar 

  62. Miyagawa H, Mohanty AK, Burgueño R et al (2006) Development of biobased unsaturated polyester containing functionalized linseed oil. Ind Eng Chem Res 45:1014–1018. https://doi.org/10.1021/ie050902e

    Article  CAS  Google Scholar 

  63. Liu C, Li J, Lei W, Zhou Y (2014) Development of biobased unsaturated polyester resin containing highly functionalized castor oil. Ind Crops Prod 52:329–337. https://doi.org/10.1016/j.indcrop.2013.11.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author, Sathyaraj Sankarlal is grateful to National Institute of Technology, Calicut for providing scholarship, contingency, TEQIP and Plan Fund research grant of National Institute of Technology Calicut, Kerala, India to carry out this research work. The author thanks Dr. C. Muraleedharan, Professor and Head, Department of Mechanical Engineering and Dr. G. Unnikrishnan, Professor, Department of Chemistry, NIT Calicut. The authors wish to thank CSIR-NIIST for helping in TGA tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathyaraj Sankar lal.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Less viscous and highly reactive Epoxy Methyl Ricinoleate (EMR) bio-resin is synthesized.

• Bio-based copolymers are developed with stiffness-toughness balance.

• Curing kinetics has been studied to reveal the catalyzing effect of bio-resin.

• Increased damping factor showed to absorb energy under vibrating conditions.

• Water absorbed by the matrix increased with bio-resin content but fully reversible.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 409 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar lal, S., Sahoo, S.K. & Kannan, S. Investigation on curing kinetics, water diffusion kinetics and thermo- mechanical properties of functionalized castor oil based epoxy copolymers. J Polym Res 29, 275 (2022). https://doi.org/10.1007/s10965-022-03122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03122-2

Keywords

Navigation