Skip to main content
Log in

High permeable and anti-fouling forward osmosis membranes modified with Grafted Graphene Oxide to Polyacrylamide (GO-PAAm)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Graphene Oxide connected to the Polyacrylamide (GO-PAAm) was synthesized via a simplistic atom transfer radical polymerization (ATRP) reaction and was used in the active layer composition of forward osmosis (FO) membrane as a modifier. The GO-PAAm can improve the hydrophilic characteristic of thin film composite (TFC) membrane, the improvement of hydrophilic property of TFC membranes leading to the better performance of membranes in water permeation. The polyacrylamide was grafted onto Graphene Oxide with ATRP reaction, then the GO-PAAm was immobilized on PES substrate as an active layer, and the compatibility between GO and polymeric membrane matrix was effectively improved with PAAm. The plate structure of graphene oxide rectifies the surface roughness of TFC membranes and prevents fouling. The Membrane surface morphology, Roughness, hydrophilicity were characterized by FESEM, AFM, Contact Angle(CA). Moreover, the characterization of GO and GO-PAAm was conducted with FT-IR, XRD, and also elemental analysis was done by EDS-mapping. Afterward, the effect of the above properties on the separation and water flux and antifouling performance of membranes was investigated. Results have shown that the water flux of the optimal membrane incorporated with GO-PAAm was 40% higher than the virgin TFC membrane. Furthermore, the rejection of NaCl of the modified membrane was 99% higher than that of the intact TFC membrane. In addition, surface modified membranes were showed superior resistance against the fouling. After cleaning flux recovery of the membrane was about 97.6%, while that of the intact TFC membrane was only 79.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References:

  1. Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci. https://doi.org/10.1016/j.memsci.2006.05.048

    Article  Google Scholar 

  2. Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science. https://doi.org/10.1126/science.1200488

    Article  PubMed  Google Scholar 

  3. Zhao S, Zou L, Tang CY, Mulcahy D (2012) Recent developments in forward osmosis: opportunities and challenges. J Membr Sci. https://doi.org/10.1016/j.memsci.2011.12.023

    Article  Google Scholar 

  4. Shakeri A, Nakhjiri MT, Salehi H, Ghorbani F, Khankeshipour N (2018) Preparation of polymer-carbon nanotubes composite hydrogel and its application as forward osmosis draw agent. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2018.04.018

    Article  Google Scholar 

  5. Shakeri A, Mighani H, Salari N, Salehi H (2019) Surface modification of forward osmosis membrane using polyoxometalate based open frameworks for hydrophilicity and water flux improvement. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2019.02.002

    Article  Google Scholar 

  6. Rastgar M, Shakeri A, Bozorg A, Salehi H, Saadattalab V (2017) Impact of nanoparticles surface characteristics on pore structure and performance of forward osmosis membranes. Desalination. https://doi.org/10.1016/j.desal.2017.01.040

    Article  Google Scholar 

  7. Salehi H, Rastgar M, Shakeri A (2017) Anti-fouling and high water permeable forward osmosis membrane fabricated via layer by layer assembly of chitosan/graphene oxide. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2017.03.271

    Article  Google Scholar 

  8. Shi J, Kang H, Li N, Teng K, Sun W, Xu Z, Qian X, Liu Q (2019) Chitosan sub-layer binding and bridging for nanofiber-based composite forward osmosis membrane. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.01.148

    Article  Google Scholar 

  9. Qi S, Li Y, Zhao Y, Li W, Tang CY (2015) Highly Efficient Forward Osmosis Based on Porous Membranes: Applications and Implications. Environ Sci Technol. https://doi.org/10.1021/es504164w

    Article  PubMed  Google Scholar 

  10. Mi B, Elimelech M (2010) Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. J Membr Sci. https://doi.org/10.1016/j.memsci.2009.11.021

    Article  Google Scholar 

  11. Shakeri A, Salehi H, Ghorbani F, Amini M, Naslhajian H (2019) Polyoxometalate based thin film nanocomposite forward osmosis membrane: Superhydrophilic, anti-fouling, and high water permeable. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2018.10.069

    Article  PubMed  Google Scholar 

  12. Xiong S, Zuo J, Ma YG, Liu L, Wu H, Wang Y (2016) Novel thin film composite forward osmosis membrane of enhanced water flux and anti-fouling property with N-[3-(trimethoxysilyl) propyl] ethylenediamine incorporated. J Membr Sci. https://doi.org/10.1016/j.memsci.2016.07.034

    Article  Google Scholar 

  13. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2010) Science and technology for water purification in the coming decades. Nat Nanotechnol. https://doi.org/10.1142/9789814287005_0035

    Article  PubMed  Google Scholar 

  14. Wei J, Liu X, Qiu C, Wang R, Tang CY (2011) Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes. J Membr Sci. https://doi.org/10.1016/j.memsci.2011.07.034

    Article  Google Scholar 

  15. Zhong P, Fu X, Chung TS, Weber M, Maletzko C (2013) Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sPPSU) as membrane substrates. Environ Sci Technol. https://doi.org/10.1021/es4013273

    Article  PubMed  Google Scholar 

  16. Rastgar M, Shakeri A, Salehi H (2019) Study of polyamide thin film characteristics impact on permeability/selectivity performance and fouling behavior of forward osmosis membrane. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0043-x

    Article  Google Scholar 

  17. Salehi H, Shakeri A, Rastgar M (2018) Carboxylic polyethersulfone: a novel pH-responsive modifier in support layer of forward osmosis membrane. J Membr Sci. https://doi.org/10.1016/j.memsci.2017.10.044

    Article  Google Scholar 

  18. Kim S, Lin X, Ou R, Liu H, Zhang X, Simon GP, Easton CD, Wang H (2017) Highly crosslinked, chlorine tolerant polymer network entwined graphene oxide membrane for water desalination. J Mater Chem A. https://doi.org/10.1039/C6TA07350F

    Article  Google Scholar 

  19. Lu X, Arias Chavez LH, Romero-Vargas Castrillón S, Ma J, Elimelech M (2015) Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes. Environ Sci Technol. https://doi.org/10.1021/es5044062

    Article  PubMed  Google Scholar 

  20. Mo Y, Tiraferri A, Yip NY, Adout A, Huang X, Elimelech M (2012) Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups. Environ Sci Technol. https://doi.org/10.1021/es303673p

    Article  PubMed  Google Scholar 

  21. Giwa A, Akther N, Dufour V, Hasan SW (2016) A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis. RSC Adv. https://doi.org/10.1039/C5RA17221G

    Article  Google Scholar 

  22. Duan J, Litwiller E, Pinnau I (2015) Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes. J Membr Sci. https://doi.org/10.1016/j.memsci.2014.09.022

    Article  Google Scholar 

  23. Yin J, Kim ES, Yang J, Deng B (2012) Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J Membr Sci. https://doi.org/10.1016/j.memsci.2012.08.020

    Article  Google Scholar 

  24. Park SH, Ko YS, Park SJ, Lee JS, Cho J, Baek KY, Kim IT, Woo K, Lee JH (2016) Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties. J Membr Sci. https://doi.org/10.1016/j.memsci.2015.09.060

    Article  Google Scholar 

  25. Lee SY, Kim HJ, Patel R, Im SJ, Kim JH, Min BR (2007) Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym Adv Technol. https://doi.org/10.1002/pat.918

    Article  Google Scholar 

  26. Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination. https://doi.org/10.1016/j.desal.2007.06.003

    Article  Google Scholar 

  27. Huang H, Qu X, Ji X, Gao X, Zhang L, Chen H, Hou L (2013) Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-1 nanozeolites. J Mater Chem A. https://doi.org/10.1039/C3TA12199B

    Article  Google Scholar 

  28. Farahbakhsh J, Delnavaz M, Vatanpour V (2017) Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties. Desalination. https://doi.org/10.1016/j.desal.2017.01.031

    Article  Google Scholar 

  29. Kim HJ, Lim MY, Jung KH, Kim DG, Lee JC (2015) High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides. J Mater Chem A. https://doi.org/10.1039/C4TA06080F

    Article  Google Scholar 

  30. Kim HJ, Choi K, Baek Y, Kim DG, Shim J, Yoon J, Lee JC (2014) High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl Mater Interfaces. https://doi.org/10.1021/am405398f

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhao H, Qiu S, Wu L, Zhang L, Chen H, Gao C (2014) Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J Membr Sci. https://doi.org/10.1016/j.memsci.2013.09.014

    Article  Google Scholar 

  32. Park J, Choi W, Kim SH, Chun BH, Bang J, Lee KB (2010) Enhancement of chlorine resistance in carbon nanotube based nanocomposite reverse osmosis membranes. Desalin Water Treat. https://doi.org/10.5004/dwt.2010.1686

    Article  Google Scholar 

  33. Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature. https://doi.org/10.1038/35102535

    Article  PubMed  Google Scholar 

  34. Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol. https://doi.org/10.1021/es400571g

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu Z, Wang W, Ju X, Xie R, Chu L (2017) Graphene-based membranes for molecular and ionic separations in aqueous environments. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2017.05.008

    Article  Google Scholar 

  36. Yamaguchi H, Eda G, Mattevi C, Kim H, Chhowalla M (2010) Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. ACS Nano. https://doi.org/10.1021/nn901496p

    Article  PubMed  Google Scholar 

  37. Liang B, Zhan W, Qi G, Lin S, Nan Q, Liu Y, Cao B, Pan K (2015) High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. J Mater Chem A. https://doi.org/10.1039/C4TA06573E

    Article  Google Scholar 

  38. Song X, Zhou Q, Zhang T, Xu H, Wang Z (2016) Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes: antifouling and chlorine resistance potentials. J Mater Chem A. https://doi.org/10.1039/C6TA06636D

    Article  Google Scholar 

  39. Wei Y, Zhang Y, Gao X, Yuan Y, Su B, Gao C (2016) Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon. https://doi.org/10.1016/j.carbon.2016.07.056

    Article  Google Scholar 

  40. Shakeri A, Razavi R, Salehi H, Fallahi M, Eghbalazar T (2019) Thin film nanocomposite forward osmosis membrane embedded with amine-functionalized ordered mesoporous silica. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.03.040

    Article  Google Scholar 

  41. Zhao W, Huang J, Fang B, Nie S, Yi N, Su B, Li H, Zhao C (2011) Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles. J Membr Sci. https://doi.org/10.1016/j.memsci.2010.11.065

    Article  Google Scholar 

  42. Ahmad AL, Abdulkarim AA, Shafie ZM, Ooi BS (2017) Fouling evaluation of PES/ZnO mixed matrix hollow fiber membrane. Desalination. https://doi.org/10.1016/j.desal.2016.10.008

    Article  Google Scholar 

  43. Blanco JF, Nguyen QT, Schaetzel P (2001) Novel hydrophilic membrane materials: sulfonated polyethersulfone Cardo. J Membr Sci. https://doi.org/10.1016/S0376-7388(01)00331-3

    Article  Google Scholar 

  44. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano. https://doi.org/10.1021/nn1006368

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc. https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  46. Jankovský O, Šimek P, Klimova K, Sedmidubský D, Matějková S, Pumera M, Sofer Z (2014) Towards graphene bromide: bromination of graphite oxide. Nanoscale. https://doi.org/10.1039/C4NR01154F

    Article  PubMed  Google Scholar 

  47. Zhao M, Fu S, Zhang H, Huang H, Wei Y, Zhang Y (2017) Enhanced separation and antifouling performance of reverse osmosis membrane incorporated with carbon nanotubes functionalized by atom transfer radical polymerization. RSC Adv. https://doi.org/10.1039/C7RA08351C

    Article  PubMed  Google Scholar 

  48. Rastgar M, Shakeri A, Bozorg A, Salehi H, Saadattalab V (2018) Highly-efficient forward osmosis membrane tailored by magnetically responsive graphene oxide/Fe3O4 nanohybrid. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.02.118

    Article  Google Scholar 

  49. Geise GM, Paul DR, Freeman BD (2014) Fundamental water and salt transport properties of polymeric materials. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2013.07.001

    Article  Google Scholar 

  50. Xie M, Nghiem LD, Price WE, Elimelech M (2014) Relating rejection of trace organic contaminants to membrane properties in forward osmosis: Measurements, modelling and implications. Water Res. https://doi.org/10.1016/j.watres.2013.11.031

    Article  PubMed  Google Scholar 

  51. Shakeri A, Salehi H, Rastgar M (2017) Chitosan-based thin active layer membrane for forward osmosis desalination. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2017.06.104

    Article  PubMed  Google Scholar 

  52. Shakeri A, Salehi H, Rastgar M (2019) Antifouling electrically conductive membrane for forward osmosis prepared by polyaniline/graphene nanocomposite. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2019.100932

    Article  Google Scholar 

  53. Dumitrescu AM, Lisa G, Iordan AR, Tudorache F, Petrila I, Borhan AI, Palamaru MN, Mihailescu C, Leontie L, Munteanu C (2015) Ni ferrite highly organized as humidity sensors. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2015.02.044

    Article  Google Scholar 

  54. Sakamaki K, Ogasawara Y (2013) OH and H2O of garnets in diamond-bearing and diamond-free garnet-clinopyroxene rocks from the Kumdy-kol area, Kokchetav Massif. InAGU Fall Meeting Abstracts.

  55. Darabi RR, Peyravi M, Jahanshahi M (2019) Modified forward osmosis membranes by two amino-functionalized ZnO nanoparticles: a comparative study. Chem Eng Res Des. https://doi.org/10.1016/j.cherd.2019.02.019

    Article  Google Scholar 

  56. Khorshidi B, Thundat T, Fleck BA, Sadrzadeh M (2016) A novel approach toward fabrication of high performance thin film composite polyamide membranes. Sci Rep. https://doi.org/10.1038/srep22069

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li Y, Pan G, Wang J, Zhang Y, Shi H, Yu H, Liu Y (2020) Tailoring the polyamide active layer of thin-film composite forward osmosis membranes with combined cosolvents during interfacial polymerization. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.0c00682

    Article  Google Scholar 

  58. Lu P, Li W, Yang S, Wei Y, Zhang Z, Li Y (2019) Layered double hydroxides (LDHs) as novel macropore-templates: The importance of porous structures for forward osmosis desalination. J Memb Sci. https://doi.org/10.1016/j.memsci.2019.05.045

    Article  Google Scholar 

  59. Yassari M, Shakeri A, Salehi H (2022) ZIF-67 templated thin-film composite forward osmosis membrane: Importance of incorporation method on morphology and performance. Chem Eng Res Des. https://doi.org/10.1016/j.cherd.2022.03.005

    Article  Google Scholar 

  60. Ren J, McCutcheon JR (2014) A new commercial thin film composite membrane for forward osmosis. Desalination. https://doi.org/10.1016/j.desal.2013.11.026

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the instrumental and financial support received from the University of Golestan and University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi HussainZadeh.

Ethics declarations

Conflicts of interest

There are no conflicts of interests or competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HussainZadeh, M., Mighani, H. & Shakeri, A. High permeable and anti-fouling forward osmosis membranes modified with Grafted Graphene Oxide to Polyacrylamide (GO-PAAm). J Polym Res 29, 169 (2022). https://doi.org/10.1007/s10965-022-03018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03018-1

Keywords

Navigation