Skip to main content
Log in

Thermal aging study of PEEK for nuclear power plant containment dome

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The poly(ether-ether-ketone) (PEEK) insulation material used in the containment dome of nuclear power plant was aged by thermal aging method with an aging period of 14 days and accelerated aging at different temperatures. The mechanical properties, crystallization behavior and thermal properties were analyzed. The results showed that the fracture strength increased with the aging temperature before 290 ℃, and decreased after 290 ℃. The results of infrared spectra analyses showed that with the increase of aging temperature, the intensity of methyl absorption peak at 2916 cm−1 and 2849 cm−1 increased. At the early aging temperature, the carbonyl index basically did not change. As the aging temperature increased, the carbonyl index gradually increased in steps and the ratio of 1310 cm−1 and 1285 cm−1 bands declined linearly. Thermal-gravimetric test results showed that the residual weight of the material became smaller and smaller with the increase of aging temperature, and the maximum decomposition temperature of the material decreased gradually. DSC analysis showed that the melting peak temperature, crystallization peak temperature, enthalpy and crystallinity decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Titarenko YE, Batyaev VF, Pavlov KV (2014) Analysis of the Parameters of the Target Unit of a Molten-Salt Subcritical Electronuclear Facility. At Energ 117(1):19–28

    Article  CAS  Google Scholar 

  2. Liu JQ, Zhang JG, Shi JD (2018) Numerical simulation and experimental research on CHF characteristics of AP1000 nuclear reactor. J Nucl Sci Technol 55(12):1412–1424

    Article  CAS  Google Scholar 

  3. Vail JR, Krick BA, Marchman KR (2011) Polytetrafluoroethylene (PTFE) fiber reinforced polyetheretherketone (PEEK) composites. Wear 270:11–12

    Article  Google Scholar 

  4. Phillips R, Glauser T, Manson JAE (1997) Thermal stability of PEEK/carbon fiber in air and its influence on consolidation. Polym Compos 18:500–508

    Article  CAS  Google Scholar 

  5. Kornacka EM, Przybytniak G, Nowicki A (2019) Radical processes initiated by ionizing radiation in PEEK and their macroscopic consequences. Polym Adv Technol 30:79–85

    Article  CAS  Google Scholar 

  6. Pascual A, Toma M, Tsotra P (2019) On the stability of PEEK for short processing cycles at high temperatures and oxygen-containing atmosphere. Polym Degrad Stab 165:161–169

    Article  CAS  Google Scholar 

  7. Schelling A, Kausch HH, Roulin AC (1991) Friction behavior of PEEK under dry reciprocation movement. Wear 151(3):129–142

    Article  CAS  Google Scholar 

  8. Nakamura H, Nakamura T, Noguchi T (2006) Photodegradation of PEEK sheets under tensile stress. Polym Degrad Stab 91:740–746

    Article  CAS  Google Scholar 

  9. Goyal RK, Tiwari AN, Mulik UP (2008) Study on microhardness, dynamic mechanical and tribological properties of PEEK/Al2O3 composites. J Appl Polym Sci 110:3379–3387

    Article  CAS  Google Scholar 

  10. Yang L, Ohki Y, Hirai N (2017) Aging of poly(ether ether ketone) by heat and gamma ray-its degradation mechanism and effects on mechanical, dielectric and thermal propertie. Polym Degrad Stab 142:117–128

    Article  CAS  Google Scholar 

  11. Courvoisier E, Bicaba Y, Colin X (2017) Analyse de la degradation thermique du Poly(ether ether cetone). Mater Tech 403:1–20

    Google Scholar 

  12. Lafi AGA (2014) FTIR spectroscopic analysis of ion irradiated poly (ether ether ketone). Polym Degrad Stab 105:122–133

    Article  Google Scholar 

  13. Hay JN, Kemmish DJ (1988) Environmental stress crack resistance of and absorption of low-molecular-weight penetrants by poly(aryl ether ether ketone). Polym 29(4):613–618

    Article  CAS  Google Scholar 

  14. Day M, Cooney JD, Wiles DM (1990) The thermal degradation of poly(aryl-ether-ether-ketone)(PEEK) as monitored by pyrolysis-GC/MS and TG/MS. J Anal Appl Pyrolysis 18(2):163–173

    Article  CAS  Google Scholar 

  15. Cole KC, Casella IG (1992) Fourier transform infrared spectroscopic study of thermal degradation in films of poly(etheretherketone). Thermochim Acta 211:209–228

    Article  CAS  Google Scholar 

  16. Jonas A, Legras R (1991) Thermal stability and crystallization of poly(aryl ether ether ketone). Polym 32(15):2691–2706

    Article  CAS  Google Scholar 

  17. Rodriguez-Cabello JC, Alonso M, Merino JC (1996) Scanning electron microscopy and differential scanning calorimetry study of the transition front in uniaxially stretched isotactic polypropylene. J Appl Polym Sci 60(10):1709–1717

    Article  CAS  Google Scholar 

  18. Maurice NC, Eric D, Leahy JJ (2013) Effects of tensile strain on the nanostructure of irradiated and thermally stabilised ultra high molecular weight polyethylenes for orthopaedic devices. RSC Adv 3:1995–2007

    Article  Google Scholar 

  19. Elokhin AP, Khmylev AN, Zhilina MV (2007) Method for assessing the consequences of radiation accidents in the rooms of a power-generating unit of a nuclear power plant with a VVR-1000 reactor. At Energ 102(4):316–328

    Article  CAS  Google Scholar 

  20. Zhang J, Du Z, Zou W, Li H, Zhang C (2017) MgO nanoparticles-decorated carbon fbers hybrid for improving thermal conductive and electrical insulating properties of Nylon 6 composite. Compos Sci Technol 148:1–8

    Article  CAS  Google Scholar 

  21. Xie GY, Sui GX, Yang R (2011) Effects of potassium titanate whiskers and carbon fbers on the wear behavior of polyetheretherketone composite under water lubricated condition. Compos Sci Technol 71(6):828–835

    Article  CAS  Google Scholar 

  22. Myllaeri V, Ruoko TP, Vuorinen J et al (2015) Characterization of thermally aged polyetheretherketone fibres-mechanical, thermal, rheological and chemical property changes. Polym Degrad Stab 120:419–426

    Article  Google Scholar 

  23. Iqbal T, Briscoe BJ, Luckham PF (2011) Surface plasticization of poly (ether ether ketone). Eur Polym J 47:2244–2258

    Article  CAS  Google Scholar 

  24. Day M, Cooney JD, Wiles DM (1989) The thermal stability of poly (aryl-ether-ether-ketone) as assessed by thermogravimetry. J Appl Polym Sci 38:323–337

    Article  CAS  Google Scholar 

  25. Courvoisier E, Bicaba Y, Colin X (2018) Multi-scale and multi-technique analysis of the thermal degradation of poly (ether ether ketone). Polym Degrad Stab 51:65–76

    Article  Google Scholar 

  26. Schmid M, Amado A, Wegener K (2014) Materials perspective of polymers for additive manufacturing with selective laser sintering. J Mater Res 29(17):1824–1832

    Article  CAS  Google Scholar 

  27. Ding RH, Xu L, Li JX (2021) Investigation and life expectancy prediction on poly(ether-ether-ketone) cables for thermo-oxidative aging in containment dome of nuclear power plant. Polym Test 107362

  28. Rhee S, White JL (2002) Crystalline structure and morphology of biaxially oriented polyamide-11 Films. J Polym Sci Part B: Polym Phys 40:2624–2640

    Article  CAS  Google Scholar 

  29. Jin J, Chen SJ, Zhang J (2010) Materials Investigation of UV aging influences on the crystallization of ethylene-vinyl acetate copolymer via successive self-nucleation and annealing treatment. J Polym Res 17:827–836

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Innovation Project of Jiangsu Province (Grant No. 2019-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuimiao Zhu.

Ethics declarations

Competing interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhang, H. & Li, J. Thermal aging study of PEEK for nuclear power plant containment dome. J Polym Res 29, 5 (2022). https://doi.org/10.1007/s10965-021-02839-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02839-w

Keywords

Navigation