Skip to main content
Log in

Development of thermo/redox-responsive diselenide linked methoxy poly (ethylene glycol)-block-poly(ε-caprolactone-co-p-dioxanone) hydrogel for localized control drug release

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Thermo/redox-sensitive injectable hydrogels made from diselenide linked methoxy poly (ethylene glycol)-block-poly (ε-caprolactone-co-p-dioxanone) (Bi(PPCD)-Se2) were reported in this study. Bi(PPCD)-Se2 hydrogels' in vitro degradation characteristics, rheological properties, and sol–gel transition pathways were investigated. The hydrogel has a pronounced viscosity (45 Pa. S), as determined by the rheological results. The Bi(PPCD)-Se2 solution remained in a free-flowing state at low temperatures owing to its amphiphilic behavior, but when heated to physiologic temperatures, it spontaneously changed into a semisolid hydrogel, which is essential for sustained drug release. The temperature of the phase change was discovered to be sensitive on the amount of solvent in the copolymer. Most significantly, the inclusion of diselenide linkages allowed the thermosensitive hydrogels to withstand oxidation and reduction-induced degradation. As a consequence, Bi(PPCD)-Se2 hydrogel degradation was greatly enhanced. This excellent stimuli-responsive DOX-loaded hydrogel has a loading content of 1.3% DOX and an encapsulation efficiency of 93%. For 22 days of incubation at 37 °C with GSH and H2O2 stimuli at pH 7.4, the DOX/Bi (PPCD)-Se2 hydrogel released 81.6% and 85.4% of their payload, respectively. The Bi(PPCD)-Se2 copolymer is biocompatible, according to the MTT experiment, which found no toxicity in HeLa and HaCaT cells. DOX/hydrogel action, on the other hand, resulted in 31.3 ± 2.2% of cell viability in the maximum concentration 10 µg/mL HeLa cells. The produced Bi(PPCD)-Se2 hydrogel could be exploited as a possible drug delivery biomaterial aimed at local drug distribution in a sustained manner due to its good redox triggered degradability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kotchetkov R, Susman D, Bhutani D, Broch K, Dispenzieri A, Buadi FK (2021) Chemotherapy-based approach is the preferred treatment for sporadic late-onset nemaline myopathy with a monoclonal protein. Int J Cancer 148(11):2807–2814. https://doi.org/10.1002/ijc.33483

    Article  CAS  PubMed  Google Scholar 

  2. Norouzi M, Nazari B, Miller DW (2016) Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discovery Today 21(11):1835–1849. https://doi.org/10.1016/j.drudis.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  3. Mo R, Gu Z (2016) Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater Today 19(5):274–283. https://doi.org/10.1016/j.mattod.2015.11.025

    Article  CAS  Google Scholar 

  4. Lee SY, Yang M, Seo J-H, Jeong DI, Hwang C, Kim H-J, Lee J, Lee K, Park J, Cho H-J (2021) Serially pH-Modulated Hydrogels Based on Boronate Ester and Polydopamine Linkages for Local Cancer Therapy. ACS Appl Mater Interfaces 13(2):2189–2203. https://doi.org/10.1021/acsami.0c16199

    Article  CAS  PubMed  Google Scholar 

  5. Salma SA, Patil MP, Kim DW, Le CMQ, Ahn B-H, Kim G-D, Lim KT (2018) Near-infrared light-responsive, diselenide containing core-cross-linked micelles prepared by the Diels-Alder click reaction for photocontrollable drug release application. Polym Chem 9(39):4813–4823. https://doi.org/10.1039/c8py00961a

    Article  CAS  Google Scholar 

  6. Xu X, Huang Z, Huang Z, Zhang X, He S, Sun X, Shen Y, Yan M, Zhao C (2017) Injectable, NIR/pH-Responsive Nanocomposite Hydrogel as Long-Acting Implant for Chemophotothermal Synergistic Cancer Therapy. ACS Appl Mater Interfaces 9(24):20361–20375. https://doi.org/10.1021/acsami.7b02307

    Article  CAS  PubMed  Google Scholar 

  7. Wang C, Liu C, Wei Q, Yang L, Yang P, Li Y, Cheng Y (2020) S, S-Tetrazine-Based Hydrogels with Visible Light Cleavable Properties for On-Demand Anticancer Drug Delivery. Research (Wash D C) 2020:6563091. https://doi.org/10.34133/2020/6563091

    Article  CAS  Google Scholar 

  8. Chen M, Grazon C, Sensharma P, Nguyen TT, Feng Y, Chern M, Baer RC, Varongchayakul N, Cook K, Lecommandoux S, Klapperich CM, Galagan JE, Dennis AM, Grinstaff MW (2020) Hydrogel-Embedded Quantum Dot-Transcription Factor Sensors for Quantitative Progesterone Detection. ACS Appl Mater Interfaces 12(39):43513–43521. https://doi.org/10.1021/acsami.0c13489

    Article  CAS  PubMed  Google Scholar 

  9. Sun Z, Song C, Wang C, Hu Y, Wu J (2020) Hydrogel-based controlled drug delivery for cancer treatment: a review. Mol Pharm 17(2):373–391. https://doi.org/10.1021/acs.molpharmaceut.9b01020

    Article  CAS  PubMed  Google Scholar 

  10. Li Z, Zhou F, Li Z, Lin S, Chen L, Liu L, Chen Y (2018) Hydrogel cross-linked with dynamic covalent bonding and micellization for promoting burn wound healing. ACS Appl Mater Interfaces 10(30):25194–25202. https://doi.org/10.1021/acsami.8b08165

    Article  CAS  PubMed  Google Scholar 

  11. Fu JJ, Zhang JY, Li SP, Zhang LM, Lin ZX, Liang L, Qin AP, Yu XY (2018) CuS nanodot-loaded thermosensitive hydrogel for anticancer photothermal therapy. Mol Pharm 15(10):4621–4631. https://doi.org/10.1021/acs.molpharmaceut.8b00624

    Article  CAS  PubMed  Google Scholar 

  12. Gwon K, Han I, Lee S, Kim Y, Lee DN (2020) Novel metal-organic framework-based photocrosslinked hydrogel system for efficient antibacterial applications. ACS Appl Mater Interfaces 12(18):20234–20242. https://doi.org/10.1021/acsami.0c03187

    Article  CAS  PubMed  Google Scholar 

  13. Liow SS, Dou Q, Kai D, Karim AA, Zhang K, Xu F, Loh XJ (2016) Thermogels: In Situ Gelling Biomaterial. ACS Biomater Sci Eng 2(3):295–316. https://doi.org/10.1021/acsbiomaterials.5b00515

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W, Tung CH (2018) Redox-responsive cisplatin nanogels for anticancer drug delivery. Chem Commun (Camb) 54(60):8367–8370. https://doi.org/10.1039/c8cc01795f

    Article  CAS  Google Scholar 

  15. Yang C, Xue Z, Liu Y, Xiao J, Chen J, Zhang L, Guo J, Lin W (2018) Delivery of anticancer drug using pH-sensitive micelles from triblock copolymer MPEG-b-PBAE-b-PLA. Mater Sci Eng C Mater Biol Appl 84:254–262. https://doi.org/10.1016/j.msec.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  16. Zhou W, Wang L, Li F, Zhang W, Huang W, Huo F, Xu H (2017) Selenium-containing polymer@ metal-organic frameworks nanocomposites as an efficient multiresponsive drug delivery system. Adv Func Mater 27(6):1605465. https://doi.org/10.1002/adfm.201605465

    Article  CAS  Google Scholar 

  17. Xia J, Li T, Lu C, Xu H (2018) Selenium-containing polymers: perspectives toward diverse applications in both adaptive and biomedical materials. Macromolecules 51(19):7435–7455. https://doi.org/10.1021/acs.macromol.8b01597

    Article  CAS  Google Scholar 

  18. Birhan YS, Darge HF, Hanurry EY, Andrgie AT, Mekonnen TW, Chou HY, Lai JY, Tsai HC (2020) Fabrication of core crosslinked polymeric micelles as nanocarriers for doxorubicin delivery: self-assembly, in situ diselenide metathesis and redox-responsive drug release. Pharmaceutics 12(6):580. https://doi.org/10.3390/pharmaceutics12060580

    Article  CAS  PubMed Central  Google Scholar 

  19. Sun C, Ji S, Li F, Xu H (2017) Diselenide-containing hyperbranched polymer with light-induced cytotoxicity. ACS Appl Mater Interfaces 9(15):12924–12929. https://doi.org/10.1021/acsami.7b02367

    Article  CAS  PubMed  Google Scholar 

  20. Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5(5):1519–1528. https://doi.org/10.1039/c3py01192e

    Article  CAS  Google Scholar 

  21. Maiti C, Parida S, Kayal S, Maiti S, Mandal M, Dhara D (2018) Redox-responsive core-cross-linked block copolymer micelles for overcoming multidrug resistance in cancer cells. ACS Appl Mater Interfaces 10(6):5318–5330. https://doi.org/10.1021/acsami.7b18245

    Article  CAS  PubMed  Google Scholar 

  22. Kang Y, Lu L, Lan J, Ding Y, Yang J, Zhang Y, Zhao Y, Zhang T, Ho RJY (2018) Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater 68:137–153. https://doi.org/10.1016/j.actbio.2017.12.028

    Article  CAS  PubMed  Google Scholar 

  23. Pandey B, Patil NG, Bhosle GS, Ambade AV, Gupta SS (2019) Amphiphilic glycopolypeptide star copolymer-based cross-linked nanocarriers for targeted and dual-stimuli-responsive drug delivery. Bioconjug Chem 30(3):633–646. https://doi.org/10.1021/acs.bioconjchem.8b00831

    Article  CAS  PubMed  Google Scholar 

  24. Song MM, Wang YM, Wang B, Liang XY, Chang ZY, Li BJ, Zhang S (2018) Super tough, ultrastretchable hydrogel with multistimuli responsiveness. ACS Appl Mater Interfaces 10(17):15021–15029. https://doi.org/10.1021/acsami.8b01410

    Article  CAS  PubMed  Google Scholar 

  25. Wei C, Zhang Y, Xu H, Xu Y, Xu Y, Lang M (2016) Well-defined labile diselenide-centered poly(epsilon-caprolactone)-based micelles for activated intracellular drug release. J Mater Chem B 4(29):5059–5067. https://doi.org/10.1039/c6tb01040g

    Article  CAS  PubMed  Google Scholar 

  26. Wang L, Cao W, Yi Y, Xu H (2014) Dual redox responsive coassemblies of diselenide-containing block copolymers and polymer lipids. Langmuir 30(19):5628–5636. https://doi.org/10.1021/la501054z

    Article  CAS  PubMed  Google Scholar 

  27. Gong C, Shan M, Li B, Wu G (2017) Injectable dual redox responsive diselenide-containing poly(ethylene glycol) hydrogel. J Biomed Mater Res A 105(9):2451–2460. https://doi.org/10.1002/jbm.a.36103

    Article  CAS  PubMed  Google Scholar 

  28. Zeng X, Zhou X, Li M, Wang C, Xu J, Ma D, Xue W (2015) Redox poly(ethylene glycol)-b-poly(L-lactide) micelles containing diselenide bonds for effective drug delivery. J Mater Sci Mater Med 26(9):234. https://doi.org/10.1007/s10856-015-5573-5

    Article  CAS  PubMed  Google Scholar 

  29. Cao W, Wang L, Xu H (2015) Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today 10(6):717–736. https://doi.org/10.1016/j.nantod.2015.11.004

    Article  CAS  Google Scholar 

  30. Li R, Peng F, Cai J, Yang D, Zhang P (2020) Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J Pharm Sci 15(3):311–325. https://doi.org/10.1016/j.ajps.2019.06.003

    Article  PubMed  Google Scholar 

  31. Zhao G, Wu X, Chen P, Zhang L, Yang CS, Zhang J (2018) Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects. Free Radic Biol Med 126:55–66. https://doi.org/10.1016/j.freeradbiomed.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  32. Zhai S, Hu X, Hu Y, Wu B, Xing D (2017) Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy. Biomaterials 121:41–54. https://doi.org/10.1016/j.biomaterials.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  33. Yanhua W, Hao H, Li Y, Zhang S (2016) Selenium-substituted hydroxyapatite nanoparticles and their in vivo antitumor effect on hepatocellular carcinoma. Colloids Surf B Biointerfaces 140:297–306. https://doi.org/10.1016/j.colsurfb.2015.12.056

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Xu Y, Wei C, Zhang Y, Yang L, Song Z, Lang M (2017) Diselenide-containing poly(ε-caprolactone)-based thermo-responsive hydrogels with oxidation and reduction-triggered degradation, Materials Today. Chemistry 4:172–179. https://doi.org/10.1016/j.mtchem.2017.03.004

    Article  Google Scholar 

  35. Hailemeskel BZ, Hsu WH, Addisu KD, Andrgie AT, Chou HY, Lai JY, Tsai HC (2019) Diselenide linkage containing triblock copolymer nanoparticles based on Bi(methoxyl poly(ethylene glycol))-poly(epsilon-carprolactone): Selective intracellular drug delivery in cancer cells. Mater Sci Eng C Mater Biol Appl 103:109803. https://doi.org/10.1016/j.msec.2019.109803

    Article  CAS  PubMed  Google Scholar 

  36. Cheng X, Jin Y, Sun T, Qi R, Fan B, Li H (2015) Oxidation- and thermo-responsive poly(N-isopropylacrylamide-co-2-hydroxyethyl acrylate) hydrogels cross-linked via diselenides for controlled drug delivery. RSC Adv 5(6):4162–4170. https://doi.org/10.1039/c4ra13500h

    Article  CAS  Google Scholar 

  37. Zhou Q, Zhang L, Yang T, Wu H (2018) Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 13:2921–2942. https://doi.org/10.2147/IJN.S158696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deepagan VG, Kwon S, You DG, Nguyen VQ, Um W, Ko H, Lee H, Jo DG, Kang YM, Park JH (2016) In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials 103:56–66. https://doi.org/10.1016/j.biomaterials.2016.06.044

    Article  CAS  PubMed  Google Scholar 

  39. Luan J, Shen W, Chen C, Lei K, Yu L, Ding J (2015) Selenium-containing thermogel for controlled drug delivery by coordination competition. RSC Adv 5(119):97975–97981. https://doi.org/10.1039/c5ra22307e

    Article  CAS  Google Scholar 

  40. Cao W, Zhang X, Miao X, Yang Z, Xu H (2013) gamma-Ray-responsive supramolecular hydrogel based on a diselenide-containing polymer and a peptide. Angew Chem Int Ed Engl 52(24):6233–6237. https://doi.org/10.1002/anie.201300662

    Article  CAS  PubMed  Google Scholar 

  41. Yang N, Xiao W, Song X, Wang W, Dong X (2020) Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy. Nano-Micro Letters 12(1). https://doi.org/10.1007/s40820-019-0347-0

  42. Lin G, Cosimbescu L, Karin NJ, Gutowska A, Tarasevich BJ (2013) Injectable and thermogelling hydrogels of PCL-g-PEG: mechanisms, rheological and enzymatic degradation properties. J Mater Chem B 1(9):1249–1255. https://doi.org/10.1039/c2tb00468b

    Article  CAS  PubMed  Google Scholar 

  43. Rangel A, Nguyen TN, Egles C, Migonney V (2021) Different real-time degradation scenarios of functionalized poly (ε-caprolactone) for biomedical applications. J Appl Polym Sci 138(17):50479

    Article  CAS  Google Scholar 

  44. Wang C-E, Zhang P-H (2016) Design and characterization of PDO biodegradable intravascular stents. Text Res J 87(16):1968–1976. https://doi.org/10.1177/0040517516660893

    Article  CAS  Google Scholar 

  45. Wang K, Fu Q, Li W, Gao Y, Zhang J (2012) Biodegradable, pH-sensitive P (CL-Pluronic-CL-co-MAA-MEG) hydrogel for 5-aminosalicylic acid delivery. Polym Chem 3(6):1539–1545

    Article  CAS  Google Scholar 

  46. Ji S, Xia J, Xu H (2015) Dynamic chemistry of selenium: Se–N and Se–Se dynamic covalent bonds in polymeric systems. ACS Macro Lett 5(1):78–82. https://doi.org/10.1021/acsmacrolett.5b00849

    Article  CAS  Google Scholar 

  47. Tan X, Yang L, Huang Z, Yu Y, Wang Z, Zhang X (2015) Amphiphilic diselenide-containing supramolecular polymers. Polym Chem 6(5):681–685. https://doi.org/10.1039/C4PY01440E

    Article  CAS  Google Scholar 

  48. Birhan YS, Hailemeskel BZ, Mekonnen TW, Hanurry EY, Darge HF, Andrgie AT, Chou HY, Lai JY, Hsiue GH, Tsai HC (2019) Fabrication of redox-responsive Bi(mPEG-PLGA)-Se2 micelles for doxorubicin delivery. Int J Pharm 567:118486. https://doi.org/10.1016/j.ijpharm.2019.118486

    Article  CAS  PubMed  Google Scholar 

  49. Cheng G, He Y, Xie L, Nie Y, He B, Zhang Z, Gu Z (2012) Development of a reduction-sensitive diselenide-conjugated oligoethylenimine nanoparticulate system as a gene carrier. Int J Nanomedicine 7:3991–4006. https://doi.org/10.2147/IJN.S32961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fentahun DH, Yibru Hanurry E, Simegniew Birhan Y, Worku Mekonnen T, Tizazu Andrgie A, Chou HY, Lai JY, Tsai HC (2021) Multifunctional drug-loaded micelles encapsulated in thermo-sensitive hydrogel for in vivo local cancer treatment: Synergistic effects of anti-vascular and immuno-chemotherapy. Chem Eng J 406:126879. https://doi.org/10.1016/j.cej.2020.126879

  51. Darge HF, Andrgie AT, Hanurry EY, Birhan YS, Mekonnen TW, Chou HY, Hsu WH, Lai JY, Lin SY, Tsai HC (2019) Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy. Int J Pharm 572:118799. https://doi.org/10.1016/j.ijpharm.2019.118799

    Article  CAS  PubMed  Google Scholar 

  52. Liu J, Zhang Z, Yang L, Fan Y, Liu Y (2019) Molecular structure and spectral characteristics of hyperoside and analysis of its molecular imprinting adsorption properties based on density functional theory. J Mol Graph Model 88:228–236. https://doi.org/10.1016/j.jmgm.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  53. Anugrah DSB, Ramesh K, Kim M, Hyun K, Lim KT (2019) Near-infrared light-responsive alginate hydrogels based on diselenide-containing cross-linkage for on demand degradation and drug release. Carbohydr Polym 223:115070. https://doi.org/10.1016/j.carbpol.2019.115070

    Article  CAS  PubMed  Google Scholar 

  54. Mekuria SL, Debele TA, Chou HY, Tsai HC (2016) IL-6 antibody and RGD peptide conjugated poly (amidoamine) dendrimer for targeted drug delivery of hela cells. J Phys Chem B 120(1):123–130. https://doi.org/10.1021/acs.jpcb.5b11125

    Article  CAS  PubMed  Google Scholar 

  55. Lv Q, He C, Quan F, Yu S, Chen X (2018) DOX/IL-2/IFN-gamma co-loaded thermo-sensitive polypeptide hydrogel for efficient melanoma treatment. Bioact Mater 3(1):118–128. https://doi.org/10.1016/j.bioactmat.2017.08.003

    Article  PubMed  Google Scholar 

  56. Wang T, Liu Y, Hao J (2014) Synthesis of poly(p-dioxanone)-based block copolymers in supercritical carbon dioxide. Colloid Polym Sci 292(10):2497–2508. https://doi.org/10.1007/s00396-014-3275-z

    Article  CAS  Google Scholar 

  57. Liu M, Song X, Wen Y, Zhu JL, Li J (2017) Injectable thermoresponsive hydrogel formed by alginate-g-poly(n-isopropylacrylamide) that releases doxorubicin-encapsulated micelles as a smart drug delivery system. ACS Appl Mater Interfaces 9(41):35673–35682. https://doi.org/10.1021/acsami.7b12849

    Article  CAS  PubMed  Google Scholar 

  58. Cheng C, Zhang X, Meng Y, Chen L, Zhang Q (2017) Development of a dual drug-loaded hydrogel delivery system for enhanced cancer therapy: in situ formation, degradation and synergistic antitumor efficiency. J Mater Chem B 5(43):8487–8497. https://doi.org/10.1039/c7tb02173a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank for the financial support from Taiwan's Ministry of Science and Technology.

Funding

The Ministry of Science and Technology of Taiwan financed this research [grant numbers (MOST105-2221-E-011–133-MY3 and 105–2221-E011-151-MY3)].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Hailemichael Tegenu Gebrie, Hsieh-Chih Tsai]; Methodology: [Hailemichael Tegenu Gebrie, Kefyalew Dagnew Addisu, Haile Fentahun Darge]; Formal analysis and investigation: [Hailemichael Tegenu Gebrie, Kefyalew Dagnew Addisu, Tefera Worku Mekonnen]; Writing—original draft preparation: [Hailemichael Tegenu Gebrie, Darieo Thankachan kottackal]; Writing—review and editing: [Hailemichael Tegenu Gebrie, Kefyalew Dagnew Addisu, Tefera Worku Mekonnen]; Funding acquisition: [Hsieh-Chih Tsai]; Resources: [Hsieh-Chih Tsai]; Supervision: [Hsieh-Chih Tsai]. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hsieh-Chih Tsai.

Ethics declarations

Competing interest

The authors say that they have no known competitive financial interests or personal affiliations that could have influenced the study's findings.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 593 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebrie, H.T., Addisu, K.D., Darge, H.F. et al. Development of thermo/redox-responsive diselenide linked methoxy poly (ethylene glycol)-block-poly(ε-caprolactone-co-p-dioxanone) hydrogel for localized control drug release. J Polym Res 28, 448 (2021). https://doi.org/10.1007/s10965-021-02776-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02776-8

Keywords

Navigation