Skip to main content
Log in

Thermosensitive hydrogel-based drug delivery system for sustained drug release

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hydrogels are unique biomaterials that have demonstrated tremendous potential in sustaining drug release. Significant effort has been made to impart stimuli sensitivity and incorporate hydrophilic molecules in a stable hydrogel network. Although, thermosensitive hydrogels have exhibited promising interventions, formulation of a biodegradable, stable thermosensitive hydrogel for sustained drug release remain to be vastly studied. Here, a novel micellarization strategy was exploited to achieve a biodegradable thermosensitive hydrogel with improved stability. Two triblock co-polymers, PCL-PEG-PCL (600–2000-600) and PCL-PEG-PCL (1000–2000-1000) with different physical properties were employed to achieve optimal critical gelling concentration and critical solution temperature (LCST) that can form a stable hydrogel network at body temperature. A library of triblock co-polymers were synthesized utilizing ε-caprolactone and poly ethylene glycol (PEG) of various chain lengths. The block co-polymers exhibiting desired physical properties were further characterized using NMR and GPC analytical techniques. Release study of diclofenac sodium was examined in presence of the thermosensitive hydrogel. The results indicated that the hydrogel sustained the release of diclofenac sodium by ~100-folds. Kinetic models further suggested a first order release rate, indicating that the release is primarily mediated by diffusion through porous membranes of the hydrogel. Such hydrogel based drug delivery system promises an effective strategy for sustaining drug release for the treatment of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McKenzie M, Betts D, Suh A, Bui K, Kim LD, Cho H (2015) Hydrogel-based drug delivery Systems for Poorly Water-Soluble Drugs. Molecules 20(11):20397–20408. https://doi.org/10.3390/molecules201119705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12

    Article  CAS  Google Scholar 

  3. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68(1):34–45. https://doi.org/10.1016/j.ejpb.2007.02.025

    Article  CAS  PubMed  Google Scholar 

  4. Klouda L (2015) Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur J Pharm Biopharm 97(Pt B):338–349. https://doi.org/10.1016/j.ejpb.2015.05.017

    Article  CAS  PubMed  Google Scholar 

  5. Gong C, Qi T, Wei X, Qu Y, Wu Q, Luo F, Qian Z (2013) Thermosensitive polymeric hydrogels as drug delivery systems. Curr Med Chem 20(1):79–94

    Article  CAS  Google Scholar 

  6. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12–13):1379–1408. https://doi.org/10.1016/j.addr.2006.09.004

    Article  CAS  PubMed  Google Scholar 

  7. Kojima C (2010) Design of stimuli-responsive dendrimers. Expert Opin Drug Deliv 7(3):307–319. https://doi.org/10.1517/17425240903530651

    Article  CAS  PubMed  Google Scholar 

  8. Calderon M, Quadir MA, Strumia M, Haag R (2010) Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie 92(9):1242–1251. https://doi.org/10.1016/j.biochi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  9. Sideratou Z, Agathokleous M, Theodossiou TA, Tsiourvas D (2018) Functionalized Hyperbranched Polyethylenimines as thermosensitive drug delivery Nanocarriers with controlled transition temperatures. Biomacromolecules 19(2):315–328. https://doi.org/10.1021/acs.biomac.7b01325

    Article  CAS  PubMed  Google Scholar 

  10. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    Article  CAS  Google Scholar 

  11. Vermonden T, NA M, van MJ, Hennink WE (2006) Rheological studies of thermosensitive triblock copolymer hydrogels. Langmuir 22(24):10180–10184. https://doi.org/10.1021/la062224m

    Article  CAS  PubMed  Google Scholar 

  12. Boonlai W, Tantishaiyakul V, Hirun N, Sangfai T, Suknuntha K (2018) Thermosensitive Poloxamer 407/poly(acrylic acid) hydrogels with potential application as injectable drug delivery system. AAPS PharmSciTech 19(5):2103–2117. https://doi.org/10.1208/s12249-018-1010-7

    Article  CAS  PubMed  Google Scholar 

  13. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem 49(36):6288–6308. https://doi.org/10.1002/anie.200902672

    Article  CAS  Google Scholar 

  14. Peng L, Liu T, Liu S, Han Y, Li X, Guang N, Sheng W (2015) Sol–gel transition of novel temperature responsive ABA triblock copolymer P(MEO2MA-co-HMAM)-b-PEG-b-P(MEO2MA-co- HMAM). J Polym Res 22(7):126. https://doi.org/10.1007/s10965-015-0772-9

    Article  CAS  Google Scholar 

  15. Mondrinos MJ, Dembzynski R, Lu L, Byrapogu VK, Wootton DM, Lelkes PI, Zhou J (2006) Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials 27(25):4399–4408. https://doi.org/10.1016/j.biomaterials.2006.03.049

    Article  CAS  PubMed  Google Scholar 

  16. Naguib HF, Abdel Aziz MS, Sherif SM, Saad GR (2011) Synthesis and thermal characterization of poly(ester-ether urethane)s based on PHB and PCL-PEG-PCL blocks. J Polym Res 18(5):1217–1227. https://doi.org/10.1007/s10965-010-9525-y

    Article  CAS  Google Scholar 

  17. Chen DR, Bei JZ, Wang SG (2000) Polycaprolactone microparticles and their biodegradation. Polym Degrad Stab 67(3):455–459. https://doi.org/10.1016/S0141-3910(99)00145-7

    Article  CAS  Google Scholar 

  18. Lee R-S, Huang Y-T (2010) Synthesis and characterization of amphiphilic triblock-graft PEG-(b-PαN3CL-g-alkyne)2 degradable copolymers. J Polym Res 17(5):697–706. https://doi.org/10.1007/s10965-009-9358-8

    Article  CAS  Google Scholar 

  19. Danafar H (2016) MPEG–PCL copolymeric nanoparticles in drug delivery systems. Cogent Med 3(1). https://doi.org/10.1080/2331205X.2016.1142411

  20. Patel SP, Vaishya R, Patel A, Agrahari V, Pal D, Mitra AK (2016) Optimization of novel pentablock copolymer based composite formulation for sustained delivery of peptide/protein in the treatment of ocular diseases. J Microencapsul 33(2):103–113. https://doi.org/10.3109/02652048.2015.1134685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388(6645):860–862. https://doi.org/10.1038/42218

    Article  CAS  PubMed  Google Scholar 

  22. Engleder E, Honeder C, Klobasa J, Wirth M, Arnoldner C, Gabor F (2014) Preclinical evaluation of thermoreversible triamcinolone acetonide hydrogels for drug delivery to the inner ear. Int J Pharm 471(1–2):297–302. https://doi.org/10.1016/j.ijpharm.2014.05.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mandal A, Cholkar K, Khurana V, Shah A, Agrahari V, Bisht R, Pal D, Mitra AK (2017) Topical formulation of self-assembled antiviral prodrug Nanomicelles for targeted retinal delivery. Mol Pharm 14(6):2056–2069. https://doi.org/10.1021/acs.molpharmaceut.7b00128

    Article  CAS  PubMed  Google Scholar 

  24. Vaishya RD, Mandal A, Patel S, Mitra AK (2015) Extended release microparticle-in-gel formulation of octreotide: effect of polymer type on acylation of peptide during in vitro release. Int J Pharm 496(2):676–688. https://doi.org/10.1016/j.ijpharm.2015.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu CB, Gong CY, Huang MJ, Wang JW, Pan YF, Zhang YD, Li GZ, Gou ML, Wang K, Tu MJ, Wei YQ, Qian ZY (2008) Thermoreversible gel-sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomed Mater Res B Appl Biomater 84(1):165–175. https://doi.org/10.1002/jbm.b.30858

    Article  CAS  PubMed  Google Scholar 

  26. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35. https://doi.org/10.1016/0378-5173(83)90064-9

    Article  CAS  Google Scholar 

  27. Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52(12):1145–1149. https://doi.org/10.1002/jps.2600521210

    Article  CAS  PubMed  Google Scholar 

  28. Hixson AW, Crowell JH (1931) Dependence of reaction velocity upon surface and agitation. Ind Eng Chem 23(8):923–931. https://doi.org/10.1021/ie50260a018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashim K. Mitra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Mandal, A., Gote, V. et al. Thermosensitive hydrogel-based drug delivery system for sustained drug release. J Polym Res 26, 131 (2019). https://doi.org/10.1007/s10965-019-1771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1771-z

Keywords

Navigation