Skip to main content
Log in

Redox poly(ethylene glycol)-b-poly(l-lactide) micelles containing diselenide bonds for effective drug delivery

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioreducible polymers have appeared as the ideal drug carriers for tumor therapy due to their properties of high stability in extracellular circulation and rapid drug release in intracellular reducing environment. Recently, the diselenide bond has emerged as a new reduction-sensitive linkage. In this work, the amphiphilic poly(ethylene glycol)-b-poly(l-lactide) containing diselenide bond has been synthesized and used to load anti-tumor drug, docetaxel (DTX), to form the redox micelles. It was found that the redox micelles showed a rapid response to glutataione (GSH), which resulted in a fast release of DTX in the presence of GSH. In contrast, <40 % of DTX was released from the micelles within 72 h under the normal condition (absence of GSH). The DTX-loaded redox micelles showed the significant inhibition effect to MCF-7 cells, and the cytotoxicity was dependent on the intracellular GSH concentrations. Moreover, considering the potentially clinical applications of the micelles through intravenous injection, the blood compatibility was also studied by the hemolysis analysis, activated partial thromboplastin time, prothrombin time and thromboelastography assays. These results confirmed that the redox micelles showed good blood safety, suggesting a potential application in tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Poon C, He CB, Liu DM, Lu KD, Lin WB. Self-assembled nanoscale coordination polymers carrying oxaliplatin and gemcitabine for synergistic combination therapy of pancreatic cancer. J Control Release. 2015;201:90. doi:10.1016/j.jconrel.2015.01.026.

    Article  Google Scholar 

  2. Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules. 2008;9:1357. doi:10.1021/bm701301s.

    Article  Google Scholar 

  3. Zhang Z, Chen SF, Jiang SY. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules. 2006;7:3311. doi:10.1021/bm060750m.

    Article  Google Scholar 

  4. Gillies ER, Frechet JMJ. pH-Responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate Chem. 2005;16:361. doi:10.1021/bc049851c.

    Article  Google Scholar 

  5. Yan Q, Zhou R, Fu CK, Zhang HJ, Yin YW, Yuan JY. CO2-responsive polymeric vesicles that breathe. Angew Chem Int Edit. 2011;50:4923. doi:10.1002/anie.201100708.

    Article  Google Scholar 

  6. Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Control Release. 2006;115:46. doi:10.1016/j.jconrel.2006.07.007.

    Article  Google Scholar 

  7. Ren HF, Wu YT, Li Y, et al. Visible-light-induced disruption of diselenide-containing layer-by-layer films: toward combination of chemotherapy and photodynamic therapy. Small. 2013;9:3981. doi:10.1002/smll.201300628.

    Article  Google Scholar 

  8. Sun Y, Yan XL, Yuan TM, et al. Disassemblable micelles based on reduction-degradable amphiphilic graft copolymers for intracellular delivery of doxorubicin. Biomaterials. 2010;31:7124. doi:10.1016/j.biomaterials.2010.06.011.

    Article  Google Scholar 

  9. He YY, Nie Y, Cheng G, Xie L, Shen YQ, Gu ZW. Viral mimicking ternary polyplexes: a reduction. Adv Mater. 2014;26:1534. doi:10.1002/adma.201304592.

    Article  Google Scholar 

  10. Kuppusamy P, Li HQ, Ilangovan G, et al. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 2002;62:307.

    Google Scholar 

  11. Xu HP, Cao W, Zhang X. Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics. Accounts Chem Res. 2013;46:1647. doi:10.1021/ar4000339.

    Article  Google Scholar 

  12. Ma N, Li Y, Xu HP, Wang ZQ, Zhang X. Dual redox responsive assemblies formed from diselenide block copolymers. J Am Chem Soc. 2010;132:442. doi:10.1021/ja908124g.

    Article  Google Scholar 

  13. Liu JY, Pang Y, Chen J, et al. Hyperbranched polydiselenide as a self assembling broad spectrum anticancer agent. Biomaterials. 2012;33:7765. doi:10.1016/j.biomaterials.2012.07.003.

    Article  Google Scholar 

  14. Wang L, Cao W, Yi Y, Xu HP. Dual redox responsive coassemblies of diselenide-containing block copolymers and polymer lipids. Langmuir. 2014;30:5628. doi:10.1021/la501054z.

    Article  Google Scholar 

  15. Cheng G, He YY, Xie L, et al. Development of a reduction-sensitive diselenide-conjugated oligoethylenimine nanoparticulate system as a gene carrier. Int J Nanomed. 2012;7:3991. doi:10.2147/Ijn.S32961.

    Google Scholar 

  16. Ma D, Lin QM, Zhang LM, Liang YY, Xue W. A star-shaped porphyrin-arginine functionalized poly (l-lysine) copolymer for photo-enhanced drug and gene co-delivery. Biomaterials. 2014;35:4357. doi:10.1016/j.biomaterials.2014.01.070.

    Article  Google Scholar 

  17. Sanyal A, Mandal S, Sastry M. Synthesis and assembly of gold nanoparticles in quasi‐linear Lysine–Keggin‐ion colloidal particles. Adv Funct Mater. 2005;15:273. doi:10.1002/adfm.200400107.

    Article  Google Scholar 

  18. Li CH, Zhong DG, Zhang Y, et al. The effect of the gene carrier material polyethyleneimine on the structure and function of human red blood cells in vitro. J Mater Chem B. 2013;1:1885. doi:10.1039/c3tb00024a.

    Article  Google Scholar 

  19. Zhong D, Jiao YP, Zhang Y, et al. Effects of the gene carrier polyethyleneimines on structure and function of blood components. Biomaterials. 2013;34:294. doi:10.1016/j.biomaterials.2012.09.060.

    Article  Google Scholar 

  20. Kabanov AV. Polymer genomics: an insight into pharmacology and toxicology of nanomedicines. Adv Drug Deliver Rev. 2006;58:1597. doi:10.1016/j.addr.2006.09.019.

    Article  Google Scholar 

  21. Vasir JK, Reddy MK, Labhasetwar VD. Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci. 2005;1:47. doi:10.2174/1573413052953110.

    Article  Google Scholar 

  22. Fu YY, Hu RS, Li CH, Wang Q, Liu ZH, Xue W. Effects of poly (amidoamine) dendrimers on the structure and function of key blood components. J Bioact Compat Pol. 2014;29:165. doi:10.1177/0883911514521921.

    Article  Google Scholar 

  23. Ma D, Zhang HB, Tu K, Zhang LM. Novel supramolecular hydrogel/micelle composite for co-delivery of anticancer drug and growth factor. Soft Matter. 2012;8:3665. doi:10.1039/c2sm25060h.

    Article  Google Scholar 

  24. Terreau O, Bartels C, Eisenberg A. Effect of poly (acrylic acid) block length distribution on polystyrene-b-poly (acrylic acid) block copolymer aggregates in solution. 2. A partial phase diagram. Langmuir. 2004;20:637. doi:10.1021/la035557h.

    Article  Google Scholar 

  25. Yim H, Park W, Kim D, Fahmy TM, Na K. A self-assembled polymeric micellar immunomodulator for cancer treatment based on cationic amphiphilic polymers. Biomaterials. 2014;35:9912. doi:10.1016/j.biomaterials.2014.08.029.

    Article  Google Scholar 

  26. Nagaraj K, Ambika S, Rajasri S, Sakthinathan S, Arunachalam S. Synthesis, micellization behavior, antimicrobial and intercalative DNA binding of some novel surfactant copper(II) complexes containing modified phenanthroline ligands. Colloid Surface B. 2014;122:151. doi:10.1016/j.colsurfb.2014.05.011.

    Article  Google Scholar 

  27. Sun TB, Jin Y, Qi R, Peng SJ, Fan BZ. Post‐assembly of oxidation‐responsive amphiphilic triblock polymer containing a single diselenide. Macromol Chem Phys. 2013;214:2875. doi:10.1002/macp.201300579.

    Article  Google Scholar 

  28. dos Santos ED, Hamel E, Bai RL, et al. Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity. Bioorg Med Chem Lett. 2013;23:4669. doi:10.1016/j.bmcl.2013.06.009.

    Article  Google Scholar 

  29. Zhang AP, Zhang Z, Shi FH, et al. Redox-sensitive shell-crosslinked polypeptide-block-polysaccharide micelles for efficient intracellular anticancer drug delivery. Macromol Biosci. 2013;13:1249. doi:10.1002/mabi.201300175.

    Article  Google Scholar 

  30. Liu JY, Pang Y, Huang W, et al. Bioreducible micelles self-assembled from amphiphilic hyperbranched multiarm copolymer for glutathione-mediated intracellular drug delivery. Biomacromolecules. 2011;12:1567. doi:10.1021/bm200275j.

    Article  Google Scholar 

  31. Kim H, Kim S, Park C, Lee H, Park HJ, Kim C. Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Adv Mater. 2010;22:4280. doi:10.1002/adma.201001417.

    Article  Google Scholar 

  32. Ping Y, Wu DC, Kumar JN, Cheng WR, Lay CL, Liu Y. Redox-responsive hyperbranched poly(amido amine)s with tertiary amino cores for gene delivery. Biomacromolecules. 2013;14:2083. doi:10.1021/bm400460r.

    Article  Google Scholar 

  33. Zhao YX, Gu XH, Ma HZ, He XG, Liu M, Ding Y. Association Of glutathione level and cytotoxicity of gold nanoparticles in lung cancer cells. J Phys Chem C. 2011;115:12797. doi:10.1021/jp2025413.

    Article  Google Scholar 

  34. Yadav S, Gupta S. Development and in vitro characterization of docetaxel-loaded ligand appended solid fat nanoemulsions for potential use in breast cancer therapy. Artif Cell Nanomed B. 2015;43:93. doi:10.3109/21691401.2013.845569.

    Article  Google Scholar 

  35. Fu H, Shi KR, Hu GL, et al. Tumor-targeted paclitaxel delivery and enhanced penetration using TAT-decorated liposomes comprising redox-responsive poly(ethylene glycol). J Pharm Sci-Us. 2015;104:1160. doi:10.1002/jps.24291.

    Article  Google Scholar 

  36. Liu T, Xue W, Ke B, Xie MQ, Ma D. Star-shaped cyclodextrin-poly(l-lysine) derivative co-delivering docetaxel and MMP-9 siRNA plasmid in cancer therapy. Biomaterials. 2014;35:3865. doi:10.1016/j.biomaterials.2014.01.040.

    Article  Google Scholar 

  37. Rossi NAA, Mustafa I, Jackson JK, et al. In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators. Biomaterials. 2009;30:638. doi:10.1016/j.biomaterials.2008.09.057.

    Article  Google Scholar 

  38. de Menezes YAS, Felix-Silva J, da Silva AA, et al. Protein-rich fraction of Cnidoscolus urens (L.) Arthur leaves: enzymatic characterization and procoagulant and fibrinogenolytic activities. Molecules. 2014;19:3552. doi:10.3390/molecules19033552.

    Article  Google Scholar 

  39. Kainthan RK, Gnanamani M, Ganguli M, et al. Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA. Biomaterials. 2006;27:5377. doi:10.1016/j.biomaterials.2006.06.021.

    Article  Google Scholar 

  40. Peng HT. Thromboelastographic study of biomaterials. J Biomed Mater Res B. 2010;94B:469. doi:10.1002/jbm.b.31626.

    Article  Google Scholar 

  41. McMichael MA, Smith SA, Galligan A, Swanson KS. In vitro hypercoagulability on whole blood thromboelastometry associated with in vivo reduction of circulating red cell mass in dogs. Vet Clin Path. 2014;43:154. doi:10.1111/vcp.12127.

    Article  Google Scholar 

  42. Zhang W, Zhou XY, Liu T, Ma D, Xue W. Supramolecular hydrogels co-loaded with camptothecin and doxorubicin for sustainedly synergistic tumor therapy. J Mater Chem B. 2015;3:2127. doi:10.1039/c4tb01971g.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (31271019), Natural Science Foundation of Guangdong Province (2014A030313361 and S2013010013452) as well as the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Ma or Wei Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Zhou, X., Li, M. et al. Redox poly(ethylene glycol)-b-poly(l-lactide) micelles containing diselenide bonds for effective drug delivery. J Mater Sci: Mater Med 26, 234 (2015). https://doi.org/10.1007/s10856-015-5573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5573-5

Keywords

Navigation