Skip to main content
Log in

The effect of UV radiation ageing on the structure, mechanical and gas permeability performances of ethylene–propylene–diene rubber

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work focused on the influence of UV radiation on the structures and performances of ethylene-propylene-diene rubber (EPDM). The exposure of EPDM to UV radiation was performed for various times (0, 7, 14, 21 and 28 days). The surface chemical structure and free volume of EPDM before and after UV ageing were determined by infrared spectroscopy (IR) and positron annihilation lifetime spectroscopy (PALS), respectively. The surface morphology, crosslink density, mechanical and gas permeability properties of EPDM were also analyzed. Under UV radiation, oxidation reactions occur on the EPDM surface and oxygenated species are formed. With prolonging ageing time, the oxidative degree increases, leading to more and denser microcracks on the surface. The plausible ageing mechanism of EPDM is suggested. At the initial 14 days of UV irradiation, the crosslink density of EPDM reduces due to the chain scission reaction, causing the increase of free volumes and thereby the enhancements of gases permeabilities. When the ageing time is longer than 14 days, crosslinking dominates and the free volumes decrease, bringing about the reductions of gases permeabilities. With prolonging ageing time, the tensile strength, glass transition temperature (Tg) and storage modulus of EPDM initially decrease and then enhance, in agreement with the change trends of crosslinking density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ciesielski A (1999) An introduction to rubber technology. Rapra Technology Limited, Shropshire

    Google Scholar 

  2. Embury P (2004) High-pressure gas testing of elastomer seals and a practical approach to designing for explosive decompression service. Seal Technol 2004:6–11

    Article  Google Scholar 

  3. Homocianu M, Airinei A, Stelescu DM, Timpu D, Ioanid A (2012) Morphological structure and surface properties of maleated ethylene propylene diene monomer/organoclay nanocomposites. Polym Compos 33:379–387

    Article  CAS  Google Scholar 

  4. Li C, Wang Y, Yuan Z, Ye L (2019) Construction of sacrificial bonds and hybrid networks in EPDM rubber towards mechanical performance enhancement. Appl Surf Sci 484:616–627

    Article  CAS  Google Scholar 

  5. Meuleman EEB, Willemsen JHA, Mulder MHV, Strathmann H (2001) EPDM as a selective membrane material in pervaporation. J Membr Sci 188:235–249

    Article  CAS  Google Scholar 

  6. Pourmand P, Linde E, Hedenqvist MS, Furó I, Dvinskikh SV, Gedde UW (2016) Profiling of thermally aged EPDM seals using portable NMR, indenter measurements and IR spectroscopy facilitating separation of different deterioration mechanisms. Polym Test 53:77–84

    Article  CAS  Google Scholar 

  7. Poltabtim W, Wimolmala E, Saenboonruang K (2018) Properties of lead-free gamma-ray shielding materials from metal oxide/EPDM rubber composites. Radiat Phys Chem 153:1–9

    Article  CAS  Google Scholar 

  8. Kommling A, Jaunich M, Wolff D (2016) Effects of heterogeneous aging in compressed HNBR and EPDM O-ring seals. Polym Degrad Stab 126:39–46

    Article  Google Scholar 

  9. Zhao Q, Li X, Gao J (2009) Aging behavior and mechanism of ethylene–propylene-diene monomer (EPDM) rubber in fluorescent UV/condensation weathering environment. Polym Degrad Stab 94:339–343

    Article  CAS  Google Scholar 

  10. Zhao Q, Li X, Gao J (2008) Surface degradation of ethylene–propylene–diene monomer (EPDM) containing 5-ethylidene-2-norbornene (ENB) as diene in artificial weathering environment. Polym Degrad Stab 93:692–699

    Article  CAS  Google Scholar 

  11. Zhao Q, Li X, Gao J, Jia Z (2009) Evaluation of ethylene–propylene–diene monomer (EPDM) aging in UV/condensation environment by principal component analysis (PCA). Mater Lett 63:1647–1649

    Article  CAS  Google Scholar 

  12. Snijders EA, Boersma A, Baarle B, Gijsman P (2005) Effect of dicumyl peroxide crosslinking on the UV stability of ethylene-propylene-diene (EPDM) elastomers containing 5-ethylene-2-norbornene (ENB). Polym Degrad Stab 89:484–491

    Article  CAS  Google Scholar 

  13. Snijders EA, Boersma A, Baarle B, Noordermeer J (2005) Effect of third monomer type and content on the UV stability of EPDM. Polym Degrad Stab 89:200–207

    Article  CAS  Google Scholar 

  14. Wang W, Qu B (2003) Photo- and thermo-oxidative degradation of photocrosslinked ethylene–propylene–diene terpolymer. Polym Degrad Stab 81:531–537

    Article  CAS  Google Scholar 

  15. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J Chem Phys 11:512–520

    CAS  Google Scholar 

  16. Crank J (1979) The Mathematics of Diffusion. Clarendon Press, Oxford

    Google Scholar 

  17. Hao N, Bohning M, Schonhals A (2010) CO2 Gas transport properties of nanocomposites based on polyhedral oligomeric phenethyl-silsesquioxanes and poly(bisphenol a carbonate). Macromolecules 43:9417–9425

    Article  CAS  Google Scholar 

  18. Li C, Ding Y, Yang Z, Yuan Z, Ye L (2020) Compressive stress-thermo oxidative ageing behaviour and mechanism of EPDM rubber gaskets for sealing resilience assessment. Polym Test 84:106366

    Article  CAS  Google Scholar 

  19. Tomer NS, Delor-Jestin F, Singh RP, Lacoste J (2007) Cross-linking assessment after accelerated ageing of ethylene propylene diene monomer rubber. Polym Degrad Stab 92:457–463

    Article  CAS  Google Scholar 

  20. Lacoste J, Vaillant D, Carlsson DJ (1993) Gamma-, photo-, and thermally-initiated oxidation of isotactic polypropylene. J Polym Sci A Polym Chem 31(3):715–722

    Article  CAS  Google Scholar 

  21. Baba M, Gardette JL, Lacoste J (1999) Crosslinking on ageing of elastomers: I. photoageing of EPDM monitored by gel, swelling and DSC measurements. Polym Degrad Stab 63:121–126

    Article  CAS  Google Scholar 

  22. Commereuc S, Vaillant D, Philippart JL, Lacoste J, Lemaire J, Carlsson DJ (1997) Photo and thermal decomposition of iPP hydroperoxides. Polym Degrad Stab 57:175–182

    Article  CAS  Google Scholar 

  23. Zhao Q, Li X, Gao J (2007) Aging of ethylene–propylene–diene monomer (EPDM) in artificial weathering environment. Polym Degrad Stab 92:1841–1846

    Article  CAS  Google Scholar 

  24. Dlubek G, Saarinen K, Fretwell HM (1998) The temperature dependence of the local free volume in polyethylene and polytetrafluoroethylene: A positron lifetime study. J Polym Sci B Polym Phys 36:1513–1528

    Article  CAS  Google Scholar 

  25. Tao SJ (1972) Positronium annihilation in molecular substances. J Chem Phys 56:5499–5510

    Article  CAS  Google Scholar 

  26. Nakanishi H, Jean YC, Smith EG, Sandreczki TC (1989) Positronium formation at free-volume sites in the amorphous regions of semicrystalline PEEK. J Polym Sci B Polym Phys 27:1419–1424

    Article  CAS  Google Scholar 

  27. Srithawatpong R, Peng ZL, Olson BG, Jamieson AM, Simha R, McGervey JD, Maier TR, Halasa AF, Ishida H (1999) Positron annihilation lifetime studies of changes in free volume on cross-linking cis-polyisoprene, high-vinyl polybutadiene, and their miscible blends. J Polym Sci B Polym Phys 37:2754–2770

    Article  CAS  Google Scholar 

  28. Karger-Kocsis J, Wu CM (2004) Thermoset rubber/layered silicate nanocomposites. Status and future trends. Polym Eng Sci 44:1083–1093

    Article  CAS  Google Scholar 

  29. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1995) Kinetics of polymer melt intercalation. Macromolecules 28:8080–8085

    Article  CAS  Google Scholar 

  30. Van Amerongen GJ (1946) The permeability of different rubbers to gases and its relation to diffusivity and solubility. J Appl Phys 17:972–985

    Article  Google Scholar 

  31. Bera D, Bandyopadhyay P, Ghosh S, Banerjee S, Padmanabhan V (2015) Highly gas permeable aromatic polyamides containing adamantane substituted triphenylamine. J Membrane Sci 474:20–31

    Article  CAS  Google Scholar 

  32. Tang Z, Zhang C, Zhu L, Guo B (2016) Low permeability styrene butadiene rubber/boehmite nanocomposites modified with tannic acid. Mater Des 103:25–31

    Article  CAS  Google Scholar 

  33. Luo M, Putnam ZA, Incavo J, Huang MY, McLaughlin JB, Krishnan S (2019) Molecular Simulations and experimental characterization of fluorinated nitrile butadiene elastomers with low H2S permeability. Ind Eng Chem Res 58:14823–14838

    Article  CAS  Google Scholar 

  34. Tan J, Chen C, Liu Y, Wu J, Wu D, Zhang X, She Z, He R, Zhang H (2020) Molecular simulations of gas transport in hydrogenated nitrile butadiene rubber. J Poly Res 27:277

    Article  CAS  Google Scholar 

  35. Teplyakov V, Meares P (1990) Correlation aspects of the selective gas permeabilities of polymeric materials and membranes. Gas Sep Purif 4:66–74

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSAF (No. U1730142), the Science Research Project of Hunan Provincial Department of Education (No. 18A257), the Natural Science Foundation of Hunan Province (No. 2018JJ3120) and the Student Innovation and Entrepreneurship Training Program of China (No. 201911535005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Wu Liu.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, JH., Chen, CL., Wu, JY. et al. The effect of UV radiation ageing on the structure, mechanical and gas permeability performances of ethylene–propylene–diene rubber. J Polym Res 28, 81 (2021). https://doi.org/10.1007/s10965-021-02447-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02447-8

Keywords

Navigation