Skip to main content
Log in

Molecular simulations of gas transport in hydrogenated nitrile butadiene rubber

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Diffusion and sorption of five gases (H2, N2, O2, CO2, CH4) in hydrogenated nitrile butadiene rubber (HNBR) have been investigated via molecular dynamics and grand canonical Monte Carlo (GCMC) simulations. According to the simulation results, the diffusion coefficients of gas molecules in HNBR decrease in the penetrant order D(H2) > D(O2) > D(N2) > D(CH4) > D(CO2), which are well correlated with effective penetrant diameter except for CO2. The decrease of D(CO2) is due to the interaction between CO2 and HNBR and the linear shape of CO2. The sorption isotherms for H2, N2, O2 and CH4 in HNBR fit the Henry model, while that of CO2 matches well with dual sorption model. Solubility coefficients of gas molecules in HNBR decrease in the sequence S(CO2) > S(O2) > S(CH4) > S(N2) > S(H2), which are associated with the effective Lennard-Jones interaction constant (ε/k) apart from CH4. The weak interaction between CH4 with HNBR decreases S(CH4), while the high compressibility and strong interaction between CO2 with HNBR improve S(CO2). The permeability calculated using diffusion and solubility coefficients decrease in the order P(H2) > P(CO2) > P(O2) > P(CH4) > P(N2). The high permeabilities of H2 and CO2 are mainly resulted from the high diffusivity and solubility, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Singha NK, Bhattacharjee S, Sivaram S (1997) Hydrogenation of diene elastomers, their properties and applications: a critical review. Rubber Chem Technol 70:309–367

    CAS  Google Scholar 

  2. Wang H, Yang L, Rempel GL (2013) Homogeneous hydrogenation art of nitrile butadiene rubber: a review. Polym Rev 53:192–239

    CAS  Google Scholar 

  3. Roff WJ, Scott JR (1971) In Fibres, films, plastics and rubbers: a handbook of common polymers. Butterworth-Heinemann, London, p 360

    Google Scholar 

  4. Hofmann W (1989) In rubber technology handbook second edn. Hanser Publishers, Munich Vienna New York, p 156

    Google Scholar 

  5. Lake LW, Mitchell RF (2006) in Drilling engineering: petroleum engineering handbook, Society of Petroleum Engineers, United States, p 245

  6. Venkat P (2018) Polyamides with phosphaphenanthrene skeleton and substituted triphenylamine for gas separation membranes. J Membrane Sci 566:129–139

    Google Scholar 

  7. Yang Q, Whiting WI (2018) Molecular-level insight of the differences in the diffusion and solubility of penetrants in polypropylene, poly(propylmethylsiloxane) and poly(4-methyl-2-pentyne). J Membrane Sci 549:173–183

    CAS  Google Scholar 

  8. Tanis I, Brown D, Neyertz S, Heck R, Mercier R, Vaidya M, Ballaguet JP (2018) A comparison of pure and mixed-gas permeation of nitrogen and methane in 6FDA-based polyimides as studied by molecular dynamics simulations. Comput Mater Sci 141:243–253

    CAS  Google Scholar 

  9. Charati SG, Stern SA (1998) Diffusion of gases in silicone polymers: molecular dynamics simulations. Macromolecules 31:5529–5535

    CAS  Google Scholar 

  10. Tamai Y, Tanaka H, Nakanishi K (1994) Molecular simulation of permeation of small penetrants through membranes. 1. Diffusion coefficients. Macromolecules 27:4498–4508

    CAS  Google Scholar 

  11. Sok RM, Berendsen HJC, van Gunsteren WF (1992) Molecular-dynamics simulation of the transport of small molecules across a polymer membrane. J Chem Phys 96:4699–4704

    CAS  Google Scholar 

  12. Kucukpinar E, Doruker P (2003) Molecular simulations of small gas diffusion and solubility in copolymers of styrene. Polymer 44:3607–3620

    CAS  Google Scholar 

  13. Kucukpinar E, Doruker P (2006) Molecular simulations of gas transport in nitrile rubber and styrene butadiene rubber. Polymer 47:7835–7845

    CAS  Google Scholar 

  14. Müller-Plathe F, Rogers SC, van Gunsteren WF (1993) Gas sorption and transport in polyisobutylene: equilibrium and nonequilibrium molecular dynamics simulations. J Chem Phys 98:9895–9904

    Google Scholar 

  15. Whitley DM, Adolf DB (2012) Investigating the permeability of atmospheric gases in polyisobutylene membranes via computer simulation. J Membrane Sci 415–416:260–264

    Google Scholar 

  16. Li Y, Wu YP, Zhang LQ, Wang XJ, Ren DY, Wu SZ (2014) Molecular dynamics simulation of diffusion behavior of cyclohexane in natural rubber during reclamation. J Appl Polym Sci 40347:1–7

    Google Scholar 

  17. Rutherford SW, Limmer DT, Smith MG, Honnell KG (2007) Gas transport in ethylenee propylenee diene (EPDM) elastomer: molecular simulation and experimental study. Polymer 48:6719–6727

    CAS  Google Scholar 

  18. Khawaja M, Sutton AP, Mostofi AA (2017) Molecular simulation of gas solubility in nitrile butadiene rubber. J Phys Chem B 121:287–297

    CAS  PubMed  Google Scholar 

  19. Luo M, Putnam ZA, Incavo J, Huang MY, McLaughlin JB, Krishnan S (2019) Molecular simulations and experimental characterization of fluorinated nitrile butadiene elastomers with low H2S permeability. Ind Eng Chem Res 58:14823–14838

    CAS  Google Scholar 

  20. Gee RH, Boyd RH (1995) Small penetrant diffusion in polybutadiene: a molecular dynamics simulation study. Polymer 36:1435–1440

    CAS  Google Scholar 

  21. Sun H (1998) COMPASS: an Ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    CAS  Google Scholar 

  22. Sun H, Ren P, Fried J (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comp Theor Polym Sci 8:229–246

    CAS  Google Scholar 

  23. Ewald PP (1921) Die berechnung optischer und elektrostatisher gitterpotentiale. Ann Phys 369:253–287

    Google Scholar 

  24. Smith W (1992) A replicated data molecular dynamics strategy for the parallel Ewald sum. Comp Phys Commun 67:392–406

    CAS  Google Scholar 

  25. Nosé SA (1984) Unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Google Scholar 

  26. Venkatanarayanan RI, Krishnan S, Sreeram A, Yuya PA, Patel NG, Tandia A, McLaughlin JB (2016) Simulated dilatometry and static deformation prediction of glass transition and mechanical properties of polyacetylene and poly(Para-phenylene vinylene). Macromol Theory Simul 25:238–253

    CAS  Google Scholar 

  27. Cuthbert TR, Wagner NJ, Paulaitis ME (1999) Molecular dynamics simulation of penetrant diffusion in amorphous polypropylene: diffusion mechanisms and simulation size effects. Macromolecules 32:5017–5028

    CAS  Google Scholar 

  28. Akkermans RL, Spenley NA, Robertson SH (2013) Monte Carlo methods in materials studio. Mol Simul 39:1153–1164

    CAS  Google Scholar 

  29. Fried JR, Sadat-Akhavi M, Mark JE (1998) Molecular simulation of gas permeability: poly(2,6-dimethyl-1,4-phenylene oxide). J Membrane Sci 149:115–126

    CAS  Google Scholar 

  30. Klingender RC (2010) In handbook of specialty elastomers, CRC press, p 56

  31. Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR (1999) In polymer handbook. Wiley, New York, p 706

    Google Scholar 

  32. Mozaffari F, Eslami H, Moghadasi J (2010) Department molecular dynamics simulation of diffusion and permeation of gases in polystyrene. Polymer 51:300–307

    CAS  Google Scholar 

  33. Gusev AA, Müller-Plathe F, van Gunsteren WF, Suter UW (1994) Dynamics of small molecules in bulk polymers. Adv Polym Sci 116:207–247

    CAS  Google Scholar 

  34. Haus JW, Kehr KW (1987) Diffusion in regular and disordered lattices. Phys Rep 150:263–406

    CAS  Google Scholar 

  35. Baumgärtner A, Moon M (1989) Anomalous polymer diffusion between long rods. Europhys Lett 9:203–208

    Google Scholar 

  36. Teplyakov V, Meares P (1990) Correlation aspects of the selective gas permeabilities of polymeric materials and membranes. Gas Sep Purif 4:66–74

    CAS  Google Scholar 

  37. Teplyakov VV, Durgaryan SG (1984) Temperature parameters of the gas permeability of polymers. Polym Sci USSR 10:2415–2421

    Google Scholar 

  38. Van Amerongen GJ (1950) Influence of structure of elastomers on their permeability to gases. J Polym Sci 5:307–332

    Google Scholar 

  39. Rindfleisch F, DiNoia TP, McHugh MA (1996) Solubility of polymers and copolymers in supercritical CO2. J Phys Chem 100:15581–15587

    CAS  Google Scholar 

  40. Bera D, Bandyopadhyay P, Ghosh S, Banerjee S, Padmanabhan V (2015) Highly gas permeable aromatic polyamides containing adamantane substituted triphenylamine. J Membrane Sci 474:20–31

    CAS  Google Scholar 

  41. Müller-Plathe F (1992) Molecular dynamics simulation of gas transport in amorphous polypropylene. J Chem Phys 96:3200–3205

    Google Scholar 

  42. Fleming GK, Koros WJ (1986) Dilation of polymers by sorption of carbon dioxide at elevated pressures. 1. Silicone rubber and unconditioned polycarbonate. Macromolecules 19:2285–2291

    CAS  Google Scholar 

  43. Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I (2000) Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci B Polym Phys 38:415–434

    CAS  Google Scholar 

  44. Paul DR (2016) In dual mode sorption model. Encyclopedia of membranes, Springer, Berlin Heidelberg, p 337

  45. Reis Nunes RC, López-González M, Riande E (2005) Basic studies on gas solubility in natural rubber–cellulose composites. J Polym Sci B Polym Phys 43:2131–2140

    Google Scholar 

  46. Van Amerongen GJ (1946) The permeability of different rubbers to gases and its relation to diffusivity and solubility. J Appl Phys 17:972–985

    Google Scholar 

  47. Gent AN, Tompkins DA (1969) Nucleation and growth of gas bubbles in elastomers. J Appl Phys 40:2520–2525

    CAS  Google Scholar 

  48. Blanks RF, Prausnitz JM (1964) Thermodynamics of polymer solubility in polar and nonpolar systems. Ind Eng Chem Fundam 3:1–8

    CAS  Google Scholar 

  49. Hansen CM (2007) In applications–barrier polymers. Hansen solubility parameters: a user’s handbook2nd edn. Taylor & Francis Group, Boca Raton, p 744

    Google Scholar 

  50. Stern SA (1994) Polymers for gas separations: the next decade. J Membrane Sci 94:1–65

    Google Scholar 

  51. Mizoguchi K, Kamiya Y, Hirose T (1991) Gas transport in poly [bis(trifluoroethoxy) phosphazene] above the T(1) transition. J Polym Sci B Polym Phys 29:695–703

    CAS  Google Scholar 

  52. Hellums MW, Koros WJ, Husk GR, Paul DR (1989) Fluorinated polycarbonates for gas separation applications. J Membrane Sci 46:93–112

    CAS  Google Scholar 

  53. El-Hibri MJ, Paul DR (1986) Gas transport in poly(vinylidene fluoride): effects of uniaxial drawing and processing temperature. J Appl Polym Sci 31:2533–2560

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSAF (No. U1730142), the Natural Science Foundation of Hunan Province (No. 2018JJ3120) and the Student Innovation and Entrepreneurship Training Program of China (No. 201811535004, 201911535005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Wu Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, JH., Chen, CL., Liu, YW. et al. Molecular simulations of gas transport in hydrogenated nitrile butadiene rubber. J Polym Res 27, 277 (2020). https://doi.org/10.1007/s10965-020-02258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02258-3

Keywords

Navigation