Skip to main content
Log in

Synthesis optimization and characterization of high molecular weight polymeric nanoparticles as EOR agent for harsh condition reservoirs

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, inverse emulsion polymerization (IEP) of acrylamide (AAm) and 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) was conducted with a constant monomer AAm/AMPS feed ratio of 80%:20%. The effects of important reaction parameters on monomer conversion, intrinsic viscosity and molecular weight of nanostructured polymers (NSPs) were comprehensively assessed and the optimal synthesis conditions (in terms of the high molecular weight characteristics) was obtained using Box–Behnken design (BBD) combined with response surface methodology (RSM). The glass transition temperature (Tg) of the synthesized NSP was obtained at 165 °C by differential scanning calorimetry (DSC). The rheology measurements demonstrated the long–term stability of the synthetized NSPs after 50 days of aging at 90 °C within the 87,000 ppm brine. Regarding the high molecular weight and acceptable long–term stability at elevated temperatures and salinity levels, the synthesized NSP could be considered as potential candidates for enhanced oil recovery (EOR) applications under harsh condition reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Still T, Chen K, Alsayed AM, Aptowicz KB, Yodh AG (2013) Synthesis of micrometer-size poly (N-isopropylacrylamide) microgel particles with homogeneous crosslinker density and diameter control. J Colloid Interface Sci 405:96–102

    Article  CAS  PubMed  Google Scholar 

  2. Finch CA (2013) Chemistry and technology of water-soluble polymers. Springer Science & Business Media, New York

    Google Scholar 

  3. Seright RS, Lane RH, Sydansk RD (2003) A strategy for attacking excess water production. SPE Prod Facil 18(03):158–169

    Article  CAS  Google Scholar 

  4. Al-Muntasheri GA, Nasr-EL-Din HA, Hussein IA (2007) A rheological investigation of a high temperature organic gel used for water shut-off treatments. J Petrol Sci Eng 59(1–2):73–78

    Article  CAS  Google Scholar 

  5. Morgan SE, McCormick CL (1990) Water-soluble polymers in enhanced oil recovery. Prog Polym Sci 15(1):103–145

    Article  CAS  Google Scholar 

  6. Yu X, Pu W, Chen D, Zhang J, Zhou F, Zhang R, Gu S (2015) Degradable cross-linked polymeric microsphere for enhanced oil recovery applications. RSC Adv 5(77):62752–62762

    Article  CAS  Google Scholar 

  7. Irvine R, Davidson J, Baker M, Devlin R, Park H (2015). Nano spherical polymer pilot in a mature 18 API sandstone reservoir water flood in Alberta, Canada. In SPE Asia Pacific Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia

  8. Durmaz S, Okay O (2000) Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization. Polymer 41(10):3693–3704

    Article  CAS  Google Scholar 

  9. Rosso F, Barbarisi A, Barbarisi M, Petillo O, Margarucci S, Calarco A, Peluso G (2003) New polyelectrolyte hydrogels for biomedical applications. Mat Sci Eng C Mater 23(3):371–376

    Article  Google Scholar 

  10. Travas-Sejdic J, Easteal A (1998) Swelling equilibria and volume phase transition of polyelectrolyte gel with strongly dissociated groups. Polym Gels Netw 5(6):481–502

    Article  Google Scholar 

  11. Kim SJ, Lee CK, Kim SI (2004) Electrical/pH responsive properties of poly (2-acrylamido-2-methylpropane sulfonic acid)/hyaluronic acid hydrogels. J Appl Polym Sci 92(3):1731–1736

    Article  CAS  Google Scholar 

  12. Peng B, Peng S, Long B, Miao Y, Guo W (2010) Properties of high-temperature-resistant drilling fluids incorporating acrylamide/(acrylic acid)/(2-acrylamido-2-methyl-1-propane sulfonic acid) terpolymer and aluminum citrate as filtration control agents. J Vinyl Addit Techn 16(1):84–89

    Article  CAS  Google Scholar 

  13. Kamal MS, Sultan AS, Al-Mubaiyedh UA, Hussien IA, Pabon M (2014) Evaluation of rheological and thermal properties of a new fluorocarbon surfactant-polymer system for EOR applications in high-temperature and high-salinity oil reservoirs. J Surfactant Deterg 17(5):985–993

    Article  CAS  Google Scholar 

  14. Seright RS, Campbell AR, Mozley PS, Han P (2010) Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations. SPE J 15(02):341–348

    Article  CAS  Google Scholar 

  15. Hunkeler D (1992) Synthesis and characterization of high molecular weight water-soluble polymers. Polym Int 27(1):23–33

    Article  CAS  Google Scholar 

  16. Pross A, Platkowski K, Reichert KH (1998) The inverse emulsion polymerization of acrylamide with pentaerythritolmyristate as emulsifier. 1. Experimental studies. Polym Int 45(1):22–26

    Article  CAS  Google Scholar 

  17. Capek I (2004) Inverse emulsion polymerization of acrylamide initiated by oil-and water-soluble initiators: effect of emulsifier concentration. Polym J 36(10):793

    Article  CAS  Google Scholar 

  18. Zhang D, Song X, Liang F, Li Z, Liu F (2006) Stability and phase behaviour of acrylamide-based emulsions before and after polymerization. J Phys Chem B 110(18):9079–9084

    Article  CAS  PubMed  Google Scholar 

  19. Blagodatskikh I, Tikhonov V, Ivanova E, Landfester K, Khokhlov A (2006) New approach to the synthesis of polyacrylamide in miniemulsified systems. Macromol Rapid Comm 27(22):1900–1905

    Article  CAS  Google Scholar 

  20. Hamzah YB, Hashim S, Rahman WA (2017) Synthesis of polymeric nano/microgels: a review. J Polym Res 24(9):134

    Article  Google Scholar 

  21. Barari M, Abdollahi M, Hemmati M (2011) Synthesis and characterization of high molecular weight polyacrylamide nanoparticles by inverse-emulsion polymerization. Iran Poly J 20(1):65–76

    CAS  Google Scholar 

  22. Singireddy A, Pedireddi SR, Subramanian S (2019) Optimization of reaction parameters for synthesis of cyclodextrin nanosponges in controlled nanoscopic size dimensions. J Polym Res 26(4):93

    Article  Google Scholar 

  23. Agrawal D, Shrivastava Y, De SK, Singh PK (2019) Synthesis of post-metallocene catalyst and study of its olefin polymerization activity at room temperature in aqueous solution followed by prediction of yield. J Polym Res 26(7):167

    Article  Google Scholar 

  24. Enayatzadeh M, Mohammadi T, Fallah N (2019) Influence of TiO2 nanoparticles loading on permeability and antifouling properties of nanocomposite polymeric membranes: experimental and statistical analysis. J Polym Res 26(10):240

    Article  CAS  Google Scholar 

  25. Es-said A, El Moussaouiti M, Bchitou R (2019) Esterification optimization of cellulose with p-Iodobenzoyl chloride using experimental design method. J Polym Res 26(9):237

    Article  CAS  Google Scholar 

  26. Jiang HL, Yang JL, Shi YP (2017) Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology. Ultrason Sonochem 34:325–331

    Article  CAS  PubMed  Google Scholar 

  27. Raza A, Li F, Xu X, Tang J (2017) Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. Int J Biol Macromol 94:335–344

    Article  CAS  PubMed  Google Scholar 

  28. Atkinson AC, Donev AN, Tobias RD (2007) Optimum experiment designs with SAS. Oxford University Press, Oxford

    Google Scholar 

  29. Zaroual Z, Chaair H, Essadki AH, El Ass K, Azzi M (2009) Optimizing the removal of trivalent chromium by electrocoagulation using experimental design. Chem Eng J 148:488–495

    Article  CAS  Google Scholar 

  30. Sohrabi MR, Moghri M, Fard Masoumi HR, Amiri S, Moosavi N (2016) Optimization of reactive blue 21 removal by nanoscale zero-valent iron using response surface methodology. Arab J Chem 9(4):518–525

    Article  CAS  Google Scholar 

  31. Unal O (2016) Optimization of shot peening parameters by response surface methodology. Surf Coat Technol 305:99–109

    Article  CAS  Google Scholar 

  32. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Series B Stat Methodol 13(1):1–38

    Google Scholar 

  33. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandao GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, Dos Santos WNL (2007) Box–Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186

    Article  CAS  PubMed  Google Scholar 

  34. Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2(4):455–475

    Article  Google Scholar 

  35. Felix CS, Barreto JA, Novaes CG, Amorim FA, Lemos VA, Andrade H, da Silva EG (2019) Application of a novel ion-imprinted polymer to the separation of traces of CdII ions in naturalw: optimization by Box-Behnken design. J Braz Chem Soc 30(4):873–881

    CAS  Google Scholar 

  36. Jahangir MA, Khan R, Sarim Imam S (2018) Formulation of sitagliptin-loaded oral polymeric nano scaffold: process parameters evaluation and enhanced anti-diabetic performance. Artif cells. Nanomed Biotechnol 46(sup1):66–78

    CAS  Google Scholar 

  37. Imam SS, Aqil M, Akhtar M, Sultana Y, Ali A (2015) Formulation by design-based proniosome for accentuated transdermal delivery of risperidone: in vitro characterization and in vivo pharmacokinetic study. Drug Deliv 22(8):1059–1070

    Article  CAS  PubMed  Google Scholar 

  38. Mahdavi HR, Azizi N, Mohammadi T (2017) Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/γ-Al2O3 membrane for CO2/CH4 separation using response surface methodology. J Polym Res 24(5):67

    Article  Google Scholar 

  39. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  40. Manaresi P, Munari A, Pilati F, Marianucci E (1988) A general intrinsic viscosity-molecular weights relationship for polydisperse polymers. Eur Polym J 24(6):575–578

    Article  CAS  Google Scholar 

  41. Wu YM, Wang YP, Yu YQ, Xu J, Chen QF (2006) Dispersion polymerization of acrylamide with 2-acrylamido-2-methyl-1-propane sulfonate in aqueous solution. J Appl Polym Sci 102(3):2379–2385

    Article  CAS  Google Scholar 

  42. Niu Y, Ouyang J, Zhu Z, Wang G, Sun G, Shi L (2001) Research on hydrophobically associating water-soluble polymer used for EOR. In SPE international symposium on oilfield chemistry, Houston, Texas

  43. Melo MA, Holleben CR, Silva IG, Correia AB, Silva GA, Rosa AJ, Lins AG, Lima JC (2005) Evaluation of polymer-injection projects in Brazil. In SPE Latin American and Caribbean petroleum engineering conference, Rio de Janeiro, Brazil

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eghbal Sahraei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seid Mohammadi, M., Sahraei, E. & Bayati, B. Synthesis optimization and characterization of high molecular weight polymeric nanoparticles as EOR agent for harsh condition reservoirs. J Polym Res 27, 41 (2020). https://doi.org/10.1007/s10965-020-2017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-2017-9

Keywords

Navigation