Skip to main content

Advertisement

Log in

Enhanced strength and self-healing properties of CA-Mg2/PVA IPN hydrogel used for shot-membrane waterproofing materials

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Waterproofing layers play a pivotal role in tunnel engineering and building basements. Magnesium acrylate (CA-Mg2) shot-membrane waterproofing materials- commonly used as a waterproof layer- is a type of hydrogel. Poly(vinyl alcohol) (PVA) solution subjected to freezing/thawing treatment has been added to a CA-Mg2 monomer, resulting in the formation of a CA-Mg2/PVA interpenetrating polymer network (IPN) hydrogel which can produced by a redox initiation system. This new IPN hydrogel contains not only a CA-Mg2 network formed with Mg2+ coordination bonds, but also a PVA network created by hydrogen bonding between hydroxyl groups. In comparison to CA-Mg2 hydrogels, the fracture stress of the CA-Mg2/PVA hydrogel increased from 0.45 MPa to 0.72 MPa, elongation from 602% to 854%, and the self-healing efficiency of the IPN hydrogel reached 99.9% over 3 h. A new shot-membrane waterproofing materials based on the CA-Mg2/PVA hydrogel was prepared and its fracture stress was 1.44 MPa, and self-healing efficiency 80%, at 3 h. In addition, damage to the hydrogel could be repaired repeatedly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kovári K (2003). Tunn Undergr Space Technol 18(1):57–69

    Article  Google Scholar 

  2. Tsukagoshi M, Miyauchi et al (2012). Constr Build Mater 36:895–905

    Article  Google Scholar 

  3. Lee K, Kim D, Chang S et al (2018). Tunn Undergr Space Technol 79:242–249

    Article  Google Scholar 

  4. Su J, Bloodworth A (2018). Tunn Undergr Space Technol 76:107–120

    Article  Google Scholar 

  5. Su J, Bloodworth A (2016). Tunn Undergr Space Technol 59:170–182

    Article  Google Scholar 

  6. Takeuchi, Takeuchi. Composition of Propellant. Institute of East Asian Synthetic Chemical Industry Co., Ltd., Official Gazette (A) Sho 61–19683

  7. Qixin Y, Bingyang C, Dongmin L (2010). J Build Mater 4(13):487–491

    Google Scholar 

  8. Yang Q, Xu P, Zheng S (2010) Experimental study of CT test on the failure of acrylate spray-applied waterproof layer in the groundwater environment. Science China Technol Sci 53(2):512–518

    Article  CAS  Google Scholar 

  9. Qixin Y, Dongmin L, Caoying S et al (2002). Journal of the China Railway Society 2(21):83–88

    Google Scholar 

  10. Yajun J, Qixin Y, Bo J, Dongmin L, Caoying S (2007). China Civil Engineering Journal 7(40):77–81

    Google Scholar 

  11. Zhang K, Luo AY (2018). J Mater Civil Eng 8(38):4018161

    Article  Google Scholar 

  12. Moon JR, Jeon YS, Kim YJ, Kim JH (2019) Adhesive, self-healing and antibacterial properties of Cu-coordinated soft gel based on histamine-conjugated polyaspartamide. J Polym Res 26:12

    Article  Google Scholar 

  13. Li LCLSJ et al (2016). Macromol Mater Eng 301(11):1390–1401

    Article  Google Scholar 

  14. Sanchez LM, Ollier RP, Alvarez VA (2019). J Polym Res 26:142

    Article  Google Scholar 

  15. Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Ionically Cross-Linked Triblock Copolymer Hydrogels with High Strength. Macromolecules 43(14):6193–6201

    Article  CAS  Google Scholar 

  16. Handique J, Dolui SK (2019). J Polym Res 26:7

    Article  Google Scholar 

  17. An H, Chang LM, Shen JF, Zhao S, Zhao M, Wang X, Qin J (2019) Light emitting self-healable hydrogel with bio-degradability prepared form pectin and Tetraphenylethylene bearing polymer. J Polym Res 26:26

    Article  Google Scholar 

  18. Neal JA, Mozhdehi D, Guan Z (2015) Enhancing Mechanical Performance of a Covalent Self-Healing Material by Sacrificial Noncovalent Bonds. J A M Chem Soc 137(14):4846–4850

    Article  CAS  Google Scholar 

  19. Chen YL, Song CZ, Lv YK, Qian X (2019) Konjac glucomannan/kappa carrageenan interpenetrating network hydrogels with enhanced mechanical strength and excellent self-healing capability. Polymer 184:121913

    Article  CAS  Google Scholar 

  20. Lv YK, Pan Z, Song CZ, Chen Y, Qian X (2019) Locust bean gum/gellan gum double-network hydrogels with superior self-healing and pH-driven shape-memory properties. Soft Matter 15(30):6171–6179

    Article  CAS  Google Scholar 

  21. Guo R, Su Q, Zhang J, Dong A, Lin C, Zhang J (2017) Facile Access to Multisensitive and Self-Healing Hydrogels with Reversible and Dynamic Boronic Ester and Disulfide Linkages. Biomacromolecules 18(4):1356–1364

    Article  CAS  Google Scholar 

  22. Song CZ, Lv YK, Qian KY, Chen Y, Qian X (2019) Preparation of konjac glucomannan–borax hydrogels with good self-healing property and pH-responsive behavior. J Polym Res 26:52

    Article  Google Scholar 

  23. Li S, Gao Y, Jiang H, Duan L, Gao G (2018) Tough, sticky and remoldable hydrophobic association hydrogel regulated by polysaccharide and sodium dodecyl sulfate as emulsifiers. Carbohyd Polym 201:591–598

    Article  CAS  Google Scholar 

  24. Fan XC, Wang T, Miao WK et al (2018) The preparation of pH-sensitive hydrogel based on host-guest and electrostatic interactions and its drug release studies in vitro. J Polym Res 25:215

    Article  Google Scholar 

  25. Kong W, Wang C, Jia C et al (2018). Adv Mater 30(39):1801–1814

    Article  Google Scholar 

  26. Li Q, Zhang Y, Wang C et al (2018). Adv Mater 30(52):1803–1815

    CAS  Google Scholar 

  27. Ameya Phadkea CZBA, Michael J (2011). P Natl Acad Sci USA 12(109):4383–4388

    Google Scholar 

  28. Xu Z, Peng J, Yan N, Yu H, Zhang S, Liu K, Fang Y (2013) Simple design but marvelous performances: molecular gels of superior strength and self-healing properties. Soft Matter 9(4):1091–1099

    Article  CAS  Google Scholar 

  29. Wang YQ, Xue YA, Wang JH, Zhu Y, Wang X, Zhang X, Zhu Y, Liao J, Li X, Wu X, Chen W (2019) Biocompatible and photoluminescent carbon dots/hydroxyapatite/PVA dual-network composite hydrogel scaffold and their properties. J Polym Res 26:248

    Article  CAS  Google Scholar 

  30. Tanpichai S, Oksman K (2016) Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery. Compos Part A-Appl S 88:226–233

    Article  CAS  Google Scholar 

  31. Li J-M, Hu C-S, Shao J-M, Li H-J, Li P-Y, Li X-C, He W-D (2017) Fabricating ternary hydrogels of P(AM-co-DMAEMA)/PVA/ β -CD based on multiple physical crosslinkage. Polymer 119:152–159

    Article  CAS  Google Scholar 

  32. Zhao F, Zhou X, Shi Y, Qian X, Alexander M, Zhao X, Mendez S, Yang R, Qu L, Yu G (2018) Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat Nanotechnol 13(6):489–495

    Article  CAS  Google Scholar 

  33. Hassan CM, Peppas NA (2000) Structure and Morphology of Freeze/Thawed PVA Hydrogels. Macromolecules 33(7):2472–2479

    Article  CAS  Google Scholar 

  34. Okumura K (2004). Europhys Lett 64(3):470–476

    Article  Google Scholar 

  35. Samadi N, Sabzi M, Babaahmadi M (2008). Int J Biol Macromol 107:2291–2297

    Article  Google Scholar 

  36. Li G, Zhang H, Fortin D, Xia H, Zhao Y (2015) Poly(vinyl alcohol)–Poly(ethylene glycol) Double-Network Hydrogel: A General Approach to Shape Memory and Self-Healing Functionalities. Langmuir 31(42):11709–11716

    Article  CAS  Google Scholar 

  37. Zhang Y, Song M, Diao Y, Li B, Shi L, Ran R (2016) Preparation and properties of polyacrylamide/polyvinyl alcohol physical double network hydrogel. RSC Adv 6(113):112468–112476

    Article  CAS  Google Scholar 

  38. Hongji Zhang HXAY (2012). Acs Macro Leet 11(1):1233–1236

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Qian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Lv, Y., Chen, Y. et al. Enhanced strength and self-healing properties of CA-Mg2/PVA IPN hydrogel used for shot-membrane waterproofing materials. J Polym Res 27, 114 (2020). https://doi.org/10.1007/s10965-020-02105-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02105-5

Keywords

Navigation