Skip to main content
Log in

Adhesive, self-healing and antibacterial properties of Cu-coordinated soft gel based on histamine-conjugated polyaspartamide

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Metal-ligand coordination bonding is a non-covalent interaction that has been extensively studied as an effective way to improve the mechanical properties of hydrogels or to generate novel supramolecular self-healing gels. In this study, biodegradable polyaspartamide derivatives conjugated with histamine were synthesized and used to prepare the metal-coordinated supramolecular gel with several different metal-ions such as Cu(II), Ni(II), and Zn(II) in an aqueous solution. The resulting gels showed high adhesive properties on glass and plastics substrates, and the adhesive strength could be modulated by using different metal-ion species as well as the concentration and medium pH. In particular, the Cu(II)-coordinated gel exhibited a reversible self-healing behavior and good antibacterial activity. These wholly bio-based supramolecular polymer gels have potential for various biomedical applications with their multifunctional properties comprising adhesive, self-healing and antimicrobial properties in wet gel state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291:2031–2047

    Article  CAS  Google Scholar 

  2. Jen AC, Wake CM, Mikos AG (1996) Hydrogels for cell immobilization. Biotechnol Bioeng 50:357–364

    Article  CAS  Google Scholar 

  3. Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 47:8002–8018

    Article  CAS  Google Scholar 

  4. Seo JH, Lee JS, Kim JH (2015) Swelling characteristics and Pb(II) ion adsorption properties of superabsorbent gel based on dopamine-conjugated poly(aspartic acid). Polym-Korea 39:917–924

  5. Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980

    Article  CAS  Google Scholar 

  6. Montarnal D, Cordier P, Soulié-Ziakovic C, Tournilhac F, Leibler L (2008) Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea. J Polym Sci Polym Chem 46:7925–7936

    Article  CAS  Google Scholar 

  7. Bode S, Bose RK, Matthes S, Ehrhardt M, Seifert A, Schacher FH, Paulus RM, Stumpf S, Sandmann B, Vitz A, Winter A, Hoeppener S, Garcia SJ, Spange S, van der Zwaag S, Hager MD, Schubert US (2013) Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polym Chem 4:4966–4973

    Article  CAS  Google Scholar 

  8. Burattini S, Greenland BW, Merino DH, Weng W, Seppaia J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic π− π stacking and hydrogen-bonding interactions. J Am Chem Soc 132:12051–12058

    Article  CAS  Google Scholar 

  9. Kakuta T, Takashima Y, Nakahata M, Otsubo M, Yamaguchi H, Harada A (2013) Preorganized hydrogel: self healing properties of supramolecular hydrogels formed by polymerization of host–guest monomers that contain cyclodextrins and hydrophobic guest groups. Adv Mater 25:2849–2853

    Article  CAS  Google Scholar 

  10. Kalista SJ, Pflug JR, Varley RJ (2013) Effect of ionic content on ballistic self-healing in EMAA copolymers and ionomers. Polym Chem 4:4910–4926

    Article  CAS  Google Scholar 

  11. Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H (2013) Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14:297–301

    Article  CAS  Google Scholar 

  12. Piepenbrock MOM, Clarke N, Steed JW (2009) Metal ion and anion-based “tuning” of a supramolecular metallogel. Langmuir 25:8451–8456

    Article  CAS  Google Scholar 

  13. Li X, Zhang H, Zhang P, Yu Y (2018) A Sunlight-Degradable Autonomous Self-Healing Supramolecular Elastomer for Flexible Electronic Devices. Chem Mater 30:3752–3758

    Article  CAS  Google Scholar 

  14. Wang Y, Huang F, Chen X, Wang XW, Zhang WB, Peng J, Li J, Zhai M (2018) Stretchable, Conductive, and Self-Healing Hydrogel with Super Metal Adhesion. Chem Mater 30:4289–4297

    Article  CAS  Google Scholar 

  15. Tran NB, Moon JR, Jeon YS, Kim J, Kim JH (2017) Adhesive and self-healing soft gel based on metal-coordinated imidazole-containing polyaspartamide. Colloid Polym Sci 295:655–664

    Article  CAS  Google Scholar 

  16. Scialabba C, Rocco F, Licciardi M, Pitarresi G, Ceruti M, Giammona G (2012) Amphiphilic polyaspartamide copolymer-based micelles for rivastigmine delivery to neuronal cells. Drug Deliv 19:307–316

    Article  CAS  Google Scholar 

  17. Lin JJ, Lin WC, Li SD, Lin CY, Hsu SH (2013) Evaluation of the Antibacterial Activity and Biocompatibility for Silver Nanoparticles Immobilized on Nano Silicate Platelets. ACS Appl Mater Interface 5:433–443

    Article  CAS  Google Scholar 

  18. Moon JR, Kim JH (2010) Biodegradable stimuli-responsive hydrogels based on amphiphilic polyaspartamides with tertiary amine pendent groups. Polym Int 59:630–636

    CAS  Google Scholar 

  19. Moon JR, Kim MW, Kim D, Jeong JH, Kim JH (2011) Synthesis and self-assembly behavior of novel polyaspartamide derivatives for anti-tumor drug delivery. Colloid Polym Sci 286:63–71

    Article  Google Scholar 

  20. Moon JR, Jeon YS, Zrinyi M, Kim JH (2013) pH-Responsive PEGylated nanoparticles based on amphiphilic polyaspartamide: preparation, physicochemical characterization and in vitro evaluation. Polym Int 62:1218–1224

    Article  CAS  Google Scholar 

  21. Huynh NT, Jeon YS, Kim D, Kim JH (2013) Preparation and swelling properties of “click” hydrogel from polyaspartamide derivatives using tri-arm PEG and PEG-co-poly(amino urethane) azides as crosslinking agents. Polymer 54:1341–1349

    Article  CAS  Google Scholar 

  22. Giammona G, Pitarresi G, Cavallaro G, Carlisi B, Craparo EF, Mandracchia D (2006) pH-sensitive hydrogel based on a polyaspartamide derivative. J Drug Del Sci Tech 16:77–84

    Article  CAS  Google Scholar 

  23. Pitarresi G, Pierro P, Palumbo FS, Tripodo G, Giammona G (2006) Photo-cross-linked hydrogels with polysaccharide−poly(amino acid) structure: new biomaterials for pharmaceutical applications. Biomacromolecules 7:1302–1310

    Article  CAS  Google Scholar 

  24. Feldner T, Haring M, Saha S, Esquena J, Banerjee R, Diaz DD (2016) Supramolecular metallogel that imparts self-healing properties to other gel networks. Chem Mater 28:3210–3217

    Article  CAS  Google Scholar 

  25. Rivas BL, Maturana HA, Molina MH, Gomez-Anton MR, Pierola IF (1998) Metal ion binding properties of poly(N-vinylimidazole) hydrogels. J Appl Polym Sci 67:1109–1118

    Article  CAS  Google Scholar 

  26. Pekel N, Guven O (1999) Investigation of complex formation between poly(N-vinyl imidazole) and various metal ions using the molar ratio method. Colloid Polym Sci 277:570–573

    Article  CAS  Google Scholar 

  27. Pestov AV, Privar YO, Ustinov AY, Voit AV, Azarova YA, Mekhaev AV, Bratskaya SY (2016) Effect of polymer backbone chemical structure on metal ions binding by imidazolylmethyl derivatives. Chem Eng J 283:323–329

    Article  CAS  Google Scholar 

  28. Yi X, He J, Wang X, Zhang Y, Tan G, Zhou Z, Chen J, Chen D, Wang R, Tian W, Yu P, Zhou L, Ning C (2018) Tunable mechanical, antibacterial, and cytocompatible hydrogels based on a functionalized dual network of metal coordination bonds and covalent crosslinking. ACS Appl Mater Interface 10:6190–6198

    Article  CAS  Google Scholar 

  29. Lazaro-Martinez JM, Monti GA, Chattaj AK (2013) Insight into the coordination sphere of copper ion in polymers containing carboxylic acid and azole groups. Polymer 54:5214–5221

    Article  CAS  Google Scholar 

  30. Trojer MA, Movahedi A, Blanck H, Nyden M (2013) Imidazole and triazole coordination chemistry for antifouling coating. J Chem 2018: ID 946739:23

    Google Scholar 

  31. Kara A, Uzun L, Besirli N, Denizli A (2017) Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal. J Hazard Mater 106:93–99

    Article  Google Scholar 

  32. Klingkajon W, Supaphol P (2014) Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings. Biomed Mater 99: 045008:11

    Google Scholar 

  33. Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl Microbiol biotechnol 98:1001–1009

    Article  CAS  Google Scholar 

  34. Villanueva ME, Diez AMR, Gonzalez JA, Perez CJ, Orrego M, Piehl L, Teves S, Copello GJ (2016) Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl Mater Interfaces 8:16280–16288

    Article  CAS  Google Scholar 

  35. Nakato T, Kusuno A, Kakuchi T (2000) Synthesis of poly(succinimide) by bulk polycondensation of L-aspartic acid with an acid catalyst. Polym Chem 38:117–122

    Article  CAS  Google Scholar 

  36. Tomida M, Nakato T, Kuramochi M (1996) Novel method of synthesizing poly(succinimide) and its copolymeric derivatives by acid-catalysed polycondensation of L-aspartic acid. Polymer 37:4435–4437

    Article  CAS  Google Scholar 

  37. Vlasak J, Rypacek F, Drobnik J, Saudek V (1979) Properties and reactivity of polysuccinimide. J Polym Sci 66:59–64

    CAS  Google Scholar 

  38. Tran NB, Kim JY, Kim YC, Kim YJ, Kim JH (2015) CO2-responsive swelling behavior and metal-ion adsorption properties in novel histamine-conjugated polyaspartamide hydrogel. J Appl Polym Sci 133:43305

    Google Scholar 

  39. Tella AC, Obaleye JA (2010) Metal complexes as antibacterial agents: Synthesis, characterization and antibacterial activity of some 3d metal complexes of sulphadimidine. Orbital Elec J Chem 2:11–26

    CAS  Google Scholar 

  40. Appleton TG, Pesch FJ, Wienken M, Menzer S, Lippert B (1992) Linkage isomerism in square-planar complexes of platinum and palladium with histidine and derivatives. Inorg Chem 31:4410–4419

    Article  CAS  Google Scholar 

  41. Tsiveriotis P, Hadjiliadis N (1999) Studies on the interaction of histidyl containing peptides with palladium(II) and platinum(II) complex ions. Coord Chem Rev 190–192:171–184

    Article  Google Scholar 

  42. Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 12:8889–8898

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea, funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1A09918727).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Heung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, J.R., Jeon, Y.S., Kim, Y.J. et al. Adhesive, self-healing and antibacterial properties of Cu-coordinated soft gel based on histamine-conjugated polyaspartamide. J Polym Res 26, 12 (2019). https://doi.org/10.1007/s10965-018-1671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1671-7

Keywords

Navigation