Skip to main content
Log in

Light emitting self-healable hydrogel with bio-degradability prepared form pectin and Tetraphenylethylene bearing polymer

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Self-healable hydrogel have wide applications in bioscience. In this research, self-healable hydrogel were prepared from TPE-[P(DMA-stat-DAA)]2 and acylhydrazide functionalized pectin. The TPE containing polymer endowed the hydrogel with light emission property while the pectin make the hydrogel biodegradable. Results showed that the pectin acylhydrazide can be prepared conveniently from pectin through hydrazinolysis. Light emissive hydrogels formed and self-healed without additional stimulus. More importantly, the hydrogel become light emitting with PL intensity higher than the polymer solution. The reason for this result is because the TPE units aggregated in the hydrophobic pectin ring and triggered AIE property. With biodegradable pectin, the hydrogel could be degraded naturally without worrying about the toxicity of the hydrogel in future bio-applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang QT, Zou YJ, Arno MC, Chen S, Wang T, Gao JY, Dove AP, Du JZ (2017) Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 46(20):6255–6275

    Article  CAS  Google Scholar 

  2. Hu J, Quan Y, Lai Y, Zheng Z, Hu Z, Wang X, Dai T, Zhang Q, Cheng Y (2017) A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity. J Control Release 247:145–152

    Article  CAS  Google Scholar 

  3. Tentor F, Lazarin-Bidóia D, Bonkovoski LC, Monteiro JP, Bonafé EG, Nakamura CV, Venter SAS, Rubira AF, Muniz EC, Martins AF (2017) Thermo-sensitive hydrogel of pectin/chitosan containing gold nanoparticles for biological applications. J Control Release 259:e28–e29

    Article  Google Scholar 

  4. Che YJ, Li DP, Liu YL, Yue Z, Zhao JL, Ma QL, Zhang Q, TanYB YQY, Meng FN (2018) Design and fabrication of a triple-responsive chitosan-based hydrogel with excellent mechanical properties for controlled drug delivery. J Polym Res 25:169

    Article  Google Scholar 

  5. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: Progress and challenges. Polymer 49(8):1993–2007

    Article  CAS  Google Scholar 

  6. Zhang Y, Tao L, Li S, Wei Y (2011) Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules 12(8):2894–2901

    Article  CAS  Google Scholar 

  7. Tseng TC, Tao L, Hsieh FY, Wei Y, Chiu IM, Hsu SH (2015) An injectable, self-healing hydrogel to repair the central nervous system. Adv Mater 27(23):3518–3524

    Article  CAS  Google Scholar 

  8. Hsieh FY, Tao L, Wei Y, Hsu SH (2017) A novel biodegradable self-healing hydrogel to induce blood capillary formation. NPG Asia Materials 9:e363

    Article  CAS  Google Scholar 

  9. Zhang Y, Fu C, Li Y, Wang K, Wang X, Wei Y, Tao L (2017) Synthesis of an injectable, self-healable and dual responsive hydrogel for drug delivery and 3D cell cultivation. Polym Chem 8:537–544

    Article  CAS  Google Scholar 

  10. Azevedo S, Costa AMS, Andersen A, Choi IS, Birkedal H, Mano JF (2017) Bioinspired Ultratough hydrogel with fast recovery, self-healing, Injectability and Cytocompatibility. Adv Mater 29(28):1700759

    Article  Google Scholar 

  11. Liu H, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2016) Self-healing polysaccharide hydrogel based on dynamic covalent enamine bonds. Macromol Mater Eng 301(6):725–732

    Article  CAS  Google Scholar 

  12. Ding F, Shi X, Wu S, Liu X, Deng H, Du Y, Li H (2017) Flexible polysaccharide hydrogel with pH-regulated recovery of self-healing and mechanical properties. Macromol Mater Eng 302(11):1700221

    Article  Google Scholar 

  13. Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2499–2506

    Article  CAS  Google Scholar 

  14. Chen F, Ni Y, Liu B, Zhou T, Yu C, Su Y, Zhu X, Yu X, Zhou Y (2017) Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr Polym 166:31–44

    Article  CAS  Google Scholar 

  15. Liang HT, Lai X, Wei M, Lu S, Wen W, Kuo S, Chen C, Tseng WI, Lin F (2018) Intratumoral injection of thermogelling and sustained-release carboplatin-loaded hydrogel simplifies the administration and remains the synergistic effect with radiotherapy for mice gliomas. Biomaterials 151:38–52

    Article  CAS  Google Scholar 

  16. Yang X, Liu G, Peng L, Guo J, Tao L, Yuan J, Chang C, Wei Y, Zhang L (2017) Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv Funct Mater 27:1703174

    Article  Google Scholar 

  17. Lu B, Lin F, Jiang X, Cheng J, Lu Q, Song J, Chen C, Huang B (2017) One-pot assembly of microfibrillated cellulose reinforced PVA–borax hydrogels with self-healing and pH-responsive properties. ACS Sustain Chem Eng 5(1):948–956

    Article  CAS  Google Scholar 

  18. Pettignano A, Grijalvo S, Haring M, Eritja R, Tanchoux N, Quignard F, Diaz D (2017) Boronic acid-modified alginate enables direct formation of injectable, self-healing and multistimuli-responsive hydrogels. Chem Commun 53(23):3350–3353

    Article  CAS  Google Scholar 

  19. Amaral AJR, Emamzadeh M, Pasparakis G (2018) Transiently malleable multi-healable hydrogel nanocomposites based on responsive boronic acid copolymers. Polym Chem 9(9):525–537

    Article  CAS  Google Scholar 

  20. Wang X, Wu G, Lu C, Wang Y, Fan Y, Gao H, Ma J (2011) Synthesis of a novel zwitterionic biodegradable poly (α,β-l-aspartic acid) derivative with some l-histidine side-residues and its resistance to non-specific protein adsorption. Colloids Surf B: Biointerfaces 86(1):237–241

    Article  CAS  Google Scholar 

  21. Chang R, Wang X, Li X, An H, Qin J (2016) Self-activated healable hydrogels with reversible temperature responsiveness. ACS Appl Mater Interfaces 8(38):25544–25551

    Article  CAS  Google Scholar 

  22. Wang X, Bian G, Zhang M, Chang L, Li Z, Li X, An H, Qin J, Chang R, Wang H (2017) Self-healable hydrogels with cross-linking induced thermo-responsiveness and multi-triggered gel-sol-gel transition. Polym Chem 8(18):2872–2880

    Article  CAS  Google Scholar 

  23. Zhang C, Liu C, Xue X, Zhang X, Huo S, Jiang Y, Chen WQ, Zou G, Liang XJ (2014) Salt-responsive self-assembly of luminescent hydrogel with intrinsic gelation-enhanced emission. ACS Appl Mater Interfaces 6(2):757–762

    Article  CAS  Google Scholar 

  24. Zhang Z, Bilalis P, Zhang H, Gnanou Y, Hadjichristidis N (2017) Core cross-linked multiarm star polymers with aggregation-induced emission and temperature responsive fluorescence characteristics. Macromolecules 50(11):4217–4226

    Article  CAS  Google Scholar 

  25. Han T, Gui C, Lam JWY, Jiang M, Xie N, Kwok RTK, Tang BZ (2017) High-contrast visualization and differentiation of microphase separation in polymer blends by fluorescent AIE probes. Macromolecules 50:5807–5815

    Article  CAS  Google Scholar 

  26. Yu C, Wu Y, Zeng F, Li X, Shi J, Wu S (2013) Hyperbranched polyester-based fluorescent probe for histone deacetylase via aggregation-induced emission. Biomacromolecules 4(12):4507–4514

    Article  Google Scholar 

  27. Song YK, Kim B, Lee TH, Kim JC, Nam JH, Noh SM, Park YI (2017) Fluorescence detection of microcapsule-type self-healing, based on aggregation-induced emission. Macromol Rapid Commun 38(6):1600657

    Article  Google Scholar 

  28. He Y, Shi S, Liu N, Ding Y, Yin J, Wu Z (2016) Tetraphenylethene-functionalized conjugated helical poly(phenyl isocyanide) with tunable light emission, assembly morphology, and specific applications. Macromolecules 49(1):48–58

    Article  CAS  Google Scholar 

  29. Liang J, Kwok RTK, Shi H, Tang BZ, Liu B (2013) Fluorescent light-up probe with aggregation-induced emission characteristics for alkaline phosphatase sensing and activity study. ACS Appl Mater Interfaces 5(17):8784–8789

    Article  CAS  Google Scholar 

  30. Zhang XY, Zhang XQ, Yang B, Liu MY, Liu WY, Chen YW, Wei Y (2014) Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polym Chem 5(2):399–404

    Article  CAS  Google Scholar 

  31. Yang B, Zhang X, Zhang X, Huang Z, Wei Y, Tao L (2016) Fabrication of aggregation-induced emission based fluorescent nanoparticles and their biological imaging application: recent progress and perspectives. Mater Today 19(5):284–291

    Article  CAS  Google Scholar 

  32. Wang Z, Nie J, Qin W, Hu Q, Tang BZ (2016) Gelation process visualized by aggregation-induced emission fluorogens. Nat Commun 7:12033

    Article  Google Scholar 

  33. Wang X, Chang L, Hu J, Lang X, Fu X, An H, Wang Y, Wang H, Qin J (2017) Self-healable hydrogels with crosslinking induced thermo-responsiveness and regulated properties from water soluble polymer. Polymer 131:202–208

    Article  CAS  Google Scholar 

  34. Zhu Y, Wang F, Zhang C, Du J (2014) Preparation and mechanism insight of nuclear envelope-like polymer vesicles for facile loading of biomacromolecules and enhanced biocatalytic activity. ACS Nano 8(7):644–6654

    Article  Google Scholar 

  35. Li H, Zhang X, Zhang X, Yang B, Yang Y, Wei Y (2014) Ultra-stable biocompatible cross-linked fluorescent polymeric nanoparticles using AIE chain transfer agent. Polym Chem 5(12):3758–3762

    Article  CAS  Google Scholar 

  36. Wang Y, Yu H, Yang H, Hao X, Tang Q, Zhang X (2017) An injectable interpenetrating polymer network hydrogel with tunable mechanical properties and self-healing abilities. Macromol Chem Phys 218(23):1700348

    Article  Google Scholar 

  37. Mukherjee S, Hill MR, Sumerlin BS (2015) Self-healing hydrogels containing reversible oxime crosslinks. Soft Matter 11(30):6152–6161

    Article  CAS  Google Scholar 

  38. An H, Li X, Fu X, Hu J, Lang X, Liu X, Wang Y, Wang H, Chang R, Qin J (2017) Self-healable hydrogels with NaHCO3 degradability and a reversible gel–sol–gel transition from phenolic ester containing polymers. RSC Adv 7:31212–31220

    Article  CAS  Google Scholar 

  39. Liu Y, Zhao Z, Lam JWY, Zhao Y, Chen Y, Liu Y, Tang BZ (2015) Cascade Polyannulation of Diyne and Benzoylacetonitrile: a new strategy for synthesizing functional substituted poly(naphthopyran)s. Macromolecules 8(13):4241–4249

    Article  Google Scholar 

  40. Qian Y, Liu H, Tan H, Yang Q, Zhang S, Han L, Yi X, Huo L, Zhao H, Wu Y (2017) A novel water-soluble fluorescence probe with wash-free cellular imaging capacity based on AIE characteristics. Macromol Rapid Commun 38(10):1600684

    Article  Google Scholar 

  41. Wang XM, Xu KY, Yao HC, Chang LM, Wang Y, Li WJ, Zhao YL, Qin JL (2018) Temperature-regulated aggregation-induced emissive self-healable hydrogels for controlled drug delivery. Polym Chem 9:5002–5013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was kindly supported by Natural Science Foundation of Hebei Province (B2018201140) and the Department of Education, Hebei Province (No. QN2017014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianglei Qin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictionalclaims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, H., Chang, L., Shen, J. et al. Light emitting self-healable hydrogel with bio-degradability prepared form pectin and Tetraphenylethylene bearing polymer. J Polym Res 26, 26 (2019). https://doi.org/10.1007/s10965-018-1690-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1690-4

Keywords

Navigation