Skip to main content
Log in

Synthesis of regioselective chitosan copolymers with β-cyclodextrin and poly(N-isopropyl acrylamide)

  • SHORT COMMUNICATION
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work aimed to design a synthetic route under mild conditions allowing the main chitosan chain to be grafted with β-cyclodextrin (β-CD) and poly(N-isopropyl acrylamide) (PNIPAm), at C2 and C6 positions, respectively. For this reason, the regioselectivity of proposed reactions is an important factor to be considered. β-CD is an oligosaccharide with a cyclic structure capable of forming inclusion complexes with hydrophobic molecules. Grafting β-CD onto the chitosan backbone by reductive N-alkylation at C2 position was carried out. With this purpose, the previous preparation of β-CD monoaldehyde was required. PNIPAm is a thermosensitive polymer with a transition temperature near 33 °C. To regioselectively anchor poly(N-isopropyl acrylamide) chains onto chitosan at C6 position, it was required to attach at the C6 position of chitosan an alkyl group for the subsequent grafting of PNIPAm-N3 by means of copper-catalyzed azide-alkyne cycloaddition click reaction. To guarantee the regioselectivity of the functionalization of chitosan with a C6 terminal alkyne, its oxyalkylation with glycidyl propargyl ether in a solvent composed of LiOH/KOH/urea was used. The structure of all derivatives was confirmed by FT-IR and 1H-NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Scheme 4
Fig. 6
Fig. 7

References

  1. Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64:866–884. https://doi.org/10.1016/j.addr.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  2. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  3. Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453:167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055

    Article  CAS  Google Scholar 

  4. Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D et al (2018) Chitosan derivatives: introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers 10:342. https://doi.org/10.3390/polym10030342

    Article  CAS  PubMed Central  Google Scholar 

  5. Kaolaor A, Phunpee S, Ruktanonchai UR, Suwantong O (2019) Effects of β-cyclodextrin complexation of curcumin and quaternization of chitosan on the properties of the blend films for use as wound dressings. J Polym Res 26:43–12. https://doi.org/10.1007/s10965-019-1703-y

    Article  CAS  Google Scholar 

  6. Daimon Y, Izawa H, Kawakami K et al (2014) Media-dependent morphology of supramolecular aggregates of β-cyclodextrin-grafted chitosan and insulin through multivalent interactions. J Mater Chem B 2:1802–1812. https://doi.org/10.1039/C3TB21528H

    Article  CAS  PubMed  Google Scholar 

  7. Furusaki E, Ueno Y, Sakairi N et al (1996) Facile preparation and inclusion ability of a chitosan derivative bearing carboxymethyl-β-cyclodextrin. Carbohydr Polym 29:29–34. https://doi.org/10.1016/0144-8617(95)00133-6

    Article  CAS  Google Scholar 

  8. Kono H, Teshirogi T (2015) Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery. Int J Biol Macromol 72:299–308. https://doi.org/10.1016/j.ijbiomac.2014.08.030

    Article  CAS  PubMed  Google Scholar 

  9. Prabaharan M, Jayakumar R (2009) Chitosan-graft-β-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. Int J Biol Macromol 44:320–325. https://doi.org/10.1016/j.ijbiomac.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  10. Song M, Li L, Zhang Y et al (2017) Carboxymethyl-β-cyclodextrin grafted chitosan nanoparticles as oral delivery carrier of protein drugs. React Funct Polym 117:10–15. https://doi.org/10.1016/j.reactfunctpolym.2017.05.008

    Article  CAS  Google Scholar 

  11. Tanida F, Tojima T, Han S-M et al (1998) Novel synthesis of a water-soluble cyclodextrin-polymer having a chitosan skeleton. Polymer 39:5261–5263. https://doi.org/10.1016/S0032-3861(97)10206-3

    Article  CAS  Google Scholar 

  12. Zhang X, Wu Z, Gao X et al (2009) Chitosan bearing pendant cyclodextrin as a carrier for controlled protein release. Carbohydr Polym 77:394–401. https://doi.org/10.1016/j.carbpol.2009.01.018

    Article  CAS  Google Scholar 

  13. Chen S, Wang Y (2001) Study on β-cyclodextrin grafting with chitosan and slow release of its inclusion complex with radioactive iodine. J Appl Polym Sci 82:2414–2421. https://doi.org/10.1002/app.2092

    Article  CAS  Google Scholar 

  14. Gonil P, Sajomsang W, Ruktanonchai UR et al (2011) Novel quaternized chitosan containing β-cyclodextrin moiety: synthesis, characterization and antimicrobial activity. Carbohydr Polym 83:905–913. https://doi.org/10.1016/j.carbpol.2010.08.080

    Article  CAS  Google Scholar 

  15. Martel B, Devassine M, Crini G et al (2001) Preparation and sorption properties of a β-cyclodextrin-linked chitosan derivative. J Polym Sci Part Polym Chem 39:169–176. https://doi.org/10.1002/1099-0518(20010101)39:1<169::AID-POLA190>3.0.CO;2-G

    Article  CAS  Google Scholar 

  16. Phunpee S, Suktham K, Surassmo S, Jarussophon S, Rungnim C, Soottitantawat A, Puttipipatkhachorn S, Ruktanonchai UR (2018) Controllable encapsulation of α-mangostin with quaternized β-cyclodextrin grafted chitosan using high shear mixing. Int J Pharm 538:21–29. https://doi.org/10.1016/j.ijpharm.2017.12.016

    Article  CAS  PubMed  Google Scholar 

  17. Sajomsang W, Nuchuchua O, Gonil P, Saesoo S, Sramala I, Soottitantawat A, Puttipipatkhachorn S, Ruktanonchai UR (2012) Water-soluble β-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier. Carbohydr Polym 89:623–631. https://doi.org/10.1016/j.carbpol.2012.03.060

    Article  CAS  PubMed  Google Scholar 

  18. Sajomsang W, Gonil P, Ruktanonchai UR, Pimpha N, Sramala I, Nuchuchua O, Saesoo S, Chaleawlert-umpon S, Puttipipatkhachorn S (2011) Self-aggregates formation and mucoadhesive property of water-soluble β-cyclodextrin grafted with chitosan. Int J Biol Macromol 48:589–595. https://doi.org/10.1016/j.ijbiomac.2011.01.028

    Article  CAS  PubMed  Google Scholar 

  19. Yu N, Li G, Gao Y, Liu X, Ma S (2016) Stimuli-sensitive hollow spheres from chitosan-graft-β-cyclodextrin for controlled drug release. Int J Biol Macromol 93:971–977. https://doi.org/10.1016/j.ijbiomac.2016.09.068

    Article  CAS  PubMed  Google Scholar 

  20. Auzély-Velty R, Rinaudo M (2002) New Supramolecular assemblies of a cyclodextrin-grafted chitosan through specific complexation. Macromolecules 35:7955–7962. https://doi.org/10.1021/ma020664o

  21. Auzély-Velty R, Rinaudo M (2001) Chitosan derivatives bearing pendant cyclodextrin cavities: synthesis and inclusion performance. Macromolecules 34:3574–3580. https://doi.org/10.1021/ma001873g

  22. Tojima T, Katsura H, Han S-M et al (1998) Preparation of an α-cyclodextrin–linked chitosan derivative via reductive amination strategy. J Polym Sci Part Polym Chem 36:1965–1968. https://doi.org/10.1002/(SICI)1099-0518(199808)36:11<1965::AID-POLA33>3.0.CO;2-A

    Article  CAS  Google Scholar 

  23. Venter JP, Kotzé AF, Auzély-Velty R, Rinaudo M (2006) Synthesis and evaluation of the mucoadhesivity of a CD-chitosan derivative. Int J Pharm 313:36–42. https://doi.org/10.1016/j.ijpharm.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  24. Lu L, Shao X, Jiao Y, Zhou C (2014) Synthesis of chitosan-graft-β-cyclodextrin for improving the loading and release of doxorubicin in the nanopaticles. J Appl Polym Sci 131:41034. https://doi.org/10.1002/app.41034

    Article  CAS  Google Scholar 

  25. Chen Y, Ye Y, Li R, Guo Y, Tan H (2013) Synthesis of chitosan 6-OH immobilized cyclodextrin derivates via click chemistry. Fibers Polym 14:1058–1065. https://doi.org/10.1007/s12221-013-1058-7

    Article  CAS  Google Scholar 

  26. Grinberg NV, Dubovik AS, Grinberg VY et al (1999) Studies of the thermal volume transition of poly(N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry. 1. Dynamic effects. Macromolecules 32:1471–1475. https://doi.org/10.1021/ma9810924

  27. Grinberg VY, Dubovik AS, Kuznetsov DV et al (2000) Studies of the thermal volume transition of poly(N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry. 2. Thermodynamic functions. Macromolecules 33:8685–8692. https://doi.org/10.1021/ma000527w

  28. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242. https://doi.org/10.3390/polym3031215

    Article  CAS  Google Scholar 

  29. Zhao S-P, Zhou F, Li L-Y (2012) pH- and temperature-responsive behaviors of hydrogels resulting from the photopolymerization of allylated chitosan and N-isopropylacrylamide, and their drug release profiles. J Polym Res 19:9944–9949. https://doi.org/10.1007/s10965-012-9944-z

    Article  CAS  Google Scholar 

  30. Bashari A, Hemmatinejad N, Pourjavadi A (2013) Hydrophobic nanocarriers embedded in a novel dual-responsive poly(N-isopropylacrylamide)/chitosan/(β-cyclodextrin) nanohydrogel. J Polym Res 20:256–210. https://doi.org/10.1007/s10965-013-0256-8

    Article  CAS  Google Scholar 

  31. Recillas M, Silva LL, Peniche C et al (2011) Thermo- and pH-responsive polyelectrolyte complex membranes from chitosan-g-N-isopropylacrylamide and pectin. Carbohydr Polym 86:1336–1343. https://doi.org/10.1016/j.carbpol.2011.06.047

    Article  CAS  Google Scholar 

  32. Argüelles-Monal W, Recillas-Mota M, Fernández-Quiroz D (2017) Chitosan-based thermosensitive materials. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, pp 279–302

  33. Chen J-P, Cheng T-H (2006) Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci 6:1026–1039. https://doi.org/10.1002/mabi.200600142

    Article  CAS  PubMed  Google Scholar 

  34. Gruskiene R, Čiuta G, Makuška R (2009) Grafting of poly(ethylene glycol) to chitosan at C(6) position of glucosamine units via “click chemistry” reactions. Chemija 20:241–249

    CAS  Google Scholar 

  35. Chen C, Liu M, Gao C, Lü S, Chen J, Yu X, Ding E, Yu C, Guo J, Cui G (2013) A convenient way to synthesize comb-shaped chitosan-graft-poly (N-isopropylacrylamide) copolymer. Carbohydr Polym 92:621–628. https://doi.org/10.1016/j.carbpol.2012.09.014

    Article  CAS  PubMed  Google Scholar 

  36. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226. https://doi.org/10.1007/s10126-005-0097-5

    Article  CAS  PubMed  Google Scholar 

  37. Cornwell MJ, Huff JB, Bieniarz C (1995) A one-step synthesis of cyclodextrin monoaldehydes. Tetrahedron Lett 36:8371–8374. https://doi.org/10.1016/0040-4039(95)01808-U

    Article  CAS  Google Scholar 

  38. Cao J, You J, Zhang L, Zhou J (2018) Homogeneous synthesis and characterization of chitosan ethers prepared in aqueous alkali/urea solutions. Carbohydr Polym 185:138–144. https://doi.org/10.1016/j.carbpol.2018.01.010

    Article  CAS  PubMed  Google Scholar 

  39. Kumar S, Kumari M, Dutta PK, Koh J (2014) Chitosan biopolymer Schiff Base: preparation, characterization, optical, and antibacterial activity. Int J Polym Mater Polym Biomater 63:173–177. https://doi.org/10.1080/00914037.2013.812088

    Article  CAS  Google Scholar 

  40. Kurita K, Ikeda H, Yoshida Y, Shimojoh M, Harata M (2002) Chemoselective protection of the amino groups of chitosan by controlled Phthaloylation: facile preparation of a precursor useful for chemical modifications. Biomacromolecules 3:1–4. https://doi.org/10.1021/bm0101163

    Article  CAS  PubMed  Google Scholar 

  41. Kurita K, Ikeda H, Shimojoh M, Yang J (2007) N-Phthaloylated chitosan as an essential precursor for controlled chemical modifications of chitosan: synthesis and evaluation. Polym J 39:945–952. https://doi.org/10.1295/polymj.PJ2007032

    Article  CAS  Google Scholar 

  42. Simionatto Guinesi L, Cavalheiro É (2006) Influence of some reactional parameters on the substitution degree of biopolymeric Schiff bases prepared from chitosan and salicylaldehyde. Carbohydr Polym 65:557–561. https://doi.org/10.1016/j.carbpol.2006.01.030

    Article  CAS  Google Scholar 

  43. Cai G, Jiang H, Tu K, Wang L, Zhu K (2009) A facile route for Regioselective conjugation of Organo-soluble polymers onto chitosan. Macromol Biosci 9:256–261. https://doi.org/10.1002/mabi.200800153

    Article  CAS  PubMed  Google Scholar 

  44. Williamson A (1850) Theory of ætherification. Lond Edinb Dublin Philos Mag J Sci 37:350–356. https://doi.org/10.1080/14786445008646627

    Article  Google Scholar 

  45. Makuška R, Gorochovceva N (2006) Regioselective grafting of poly(ethylene glycol) onto chitosan through C-6 position of glucosamine units. Carbohydr Polym 64:319–327. https://doi.org/10.1016/j.carbpol.2005.12.006

    Article  CAS  Google Scholar 

  46. Duan J, Liang X, Cao Y et al (2015) High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules 48:2706–2714. https://doi.org/10.1021/acs.macromol.5b00117

    Article  CAS  Google Scholar 

  47. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts, Third edn. Wiley, Chichester

    Google Scholar 

  48. Sarwar A, Katas H, Samsudin SN, Zin NM (2015) Regioselective sequential modification of chitosan via azide-alkyne click reaction: synthesis, characterization, and antimicrobial activity of chitosan derivatives and nanoparticles. PLoS One 10:e0123084. https://doi.org/10.1371/journal.pone.0123084

  49. Bao H, Li L, Gan LH et al (2010) Thermo- and pH-responsive association behavior of dual hydrophilic graft chitosan Terpolymer synthesized via ATRP and click chemistry. Macromolecules 43:5679–5687. https://doi.org/10.1021/ma100894p

    Article  CAS  Google Scholar 

  50. Fernández-Quiroz D, González-Gómez Á, Lizardi-Mendoza J, Vázquez-Lasa B, Goycoolea FM, San Román J, Argüelles-Monal WM (2015) Effect of the molecular architecture on the thermosensitive properties of chitosan-g-poly(N-vinylcaprolactam). Carbohydr Polym 134:92–101. https://doi.org/10.1016/j.carbpol.2015.07.069

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

ICS acknowledges CONACyT for his scholarship for Ph.D. studies (664924). The authors are grateful to Dr. Refugio Pérez-González from the Spectroscopy Laboratory of the Department of Polymers and Materials of the University of Sonora for providing the 1H-NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldo Argüelles-Monal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canale-Salazar, I., Lizardi-Mendoza, J., López-Franco, Y. et al. Synthesis of regioselective chitosan copolymers with β-cyclodextrin and poly(N-isopropyl acrylamide). J Polym Res 27, 112 (2020). https://doi.org/10.1007/s10965-020-02076-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02076-7

Keywords

Navigation