Skip to main content
Log in

pH- and temperature-responsive behaviors of hydrogels resulting from the photopolymerization of allylated chitosan and N-isopropylacrylamide, and their drug release profiles

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Allyl glycidyl ether (AGE)-functionalized chitosan (CS-AGE), a macromolecular crosslinker, was synthesized and then copolymerized with N-isopropylacrylamide (NIPAAm) monomer under UV irradiation to produce hydrogels. The allylated chitosan and the resulting hydrogels were characterized by 1 H NMR and FT IR, respectively. The interior morphologies of the hydrogels were investigated by scanning electron microscopy (SEM) after freeze drying them in the equilibrium state in buffer solution at pH 2.0. Their swelling kinetics were found to be sensitive to both temperature and pH, so it was possible to modulate the swelling by adjusting the pH or the temperature of the medium containing the hydrogel and the proportion of the CS derivative with respect to the NIPAAm monomer. Rheological measurements were utilized to investigate the mechanical properties of the hydrogels. The in vitro release profiles of the model drugs methyl orange (MO) and bovine serum albumin (BSA) from the hydrogels were also examined. The results revealed that the drug release rate could be tuned by adjusting the pH of the medium and the hydrogel composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shinji S, Masayuki O, Isao I (2007) Macromolecules 40:3394–3401

    Article  Google Scholar 

  2. De SK, Aluru NR, Johnson B, Crone WC, Beebe DJ, Moore J (2002) J Microelectromech Syst 11:544–555

    Article  CAS  Google Scholar 

  3. Qiu Y, Park K (2001) Adv Drug Deliv Rev 53:321–339

    Article  CAS  Google Scholar 

  4. Matsusaki M, Akashi M (2005) Biomacromolecules 6:3351–3356

    Article  CAS  Google Scholar 

  5. Kim JJ, Park K (1999) Bioseparation 7:177–184

    Article  CAS  Google Scholar 

  6. Zhao SP, Xu WL (2010) J Polym Res 17:503–510

    Article  CAS  Google Scholar 

  7. Shishido SM, Seabra AB, Loh W, de Oliveira MG (2003) Biomaterials 24:3543–3553

    Article  CAS  Google Scholar 

  8. Choi SW, Choi SY, Jeong B, Kim SW, Lee DS (1999) J Polym Sci A Polym Chem 37:2207–2218

    Article  CAS  Google Scholar 

  9. Kharlampieva E, Erel-Unal I, Sukhishvili SA (2007) Langmuir 23:175–181

    Article  CAS  Google Scholar 

  10. Chen JP, Leu YL, Fang CL, Chen CH, Fang JY (2011) J Pharm Sci 100:655–666

    Article  CAS  Google Scholar 

  11. Harsh DC, Gehrke SH (1991) J Contr Rel 17:175–185

    Article  CAS  Google Scholar 

  12. Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Jamshidi A, Mobedi H (2007) J Bioact Compat Polym 22:342–356

    Article  CAS  Google Scholar 

  13. Kikuchi A, Kawabuchi M, Watanabe A, Sugihara M, Sakurai Y, Okano T (1999) J Contr Rel 58:21–28

    Article  CAS  Google Scholar 

  14. VandeVord PJ, Matthew HW, De Silva SP, Mayton L, Wu BP, Wooley H (2002) J Biomed Mater Res 59:585–590

    Article  CAS  Google Scholar 

  15. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) J Contr Rel 100:5–28

    Article  CAS  Google Scholar 

  16. Ma PL, Lavertu M, Winnik FM, Buschmann MD (2009) Biomacromolecules 10:1490–1499

    Article  CAS  Google Scholar 

  17. Yu LMY, Kazazian K, Shoichet MS (2007) J Biomed Mater Res 82A:243–255

    Article  CAS  Google Scholar 

  18. Mourya VK, Inamdar NN (2008) React Funct Polym 68:1013–1051

    Article  CAS  Google Scholar 

  19. Guilherme MR, Silva R, Girotto EM, Rubira AF, Muniz EC (2003) Polymer 44:4213–4219

    Article  CAS  Google Scholar 

  20. Bae YH, Okano T, Hsu R, Kim SW (1987) Makromol Chem Rapid Commun 8:481–485

    Article  CAS  Google Scholar 

  21. Kurisawa M, Yokoyama M, Okano T (2000) J Contr Rel 69:127–137

    Article  CAS  Google Scholar 

  22. Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Jin JW, Lee W (2004) Biomaterials 25:5743–5751

    Article  CAS  Google Scholar 

  23. Kim SY, Cho SM, Lee YM, Kim SJ (2000) J Appl Polym Sci 78:1381–1391

    Article  CAS  Google Scholar 

  24. Alvarez-Lorenzo C, Concheiro A, Dubovik AS, Grinberg NV, Burova TV, Grinberg VY (2005) J Contr Rel 102:629–641

    Article  CAS  Google Scholar 

  25. Zhao SP, Li LY, Cao MJ, Xu WL (2011) Polym Bull 66:1075–1087

    Article  CAS  Google Scholar 

  26. Verestiuc L, Nastasescu O, Barbu E, Sarvaiya I, Green KL, Tsibouklis J (2006) J Biomed Mater Res 77A:726–735

    Article  CAS  Google Scholar 

  27. Flores RN, Elizade PEA, Luna BG, Vasquez GSR, Gonzalez HJ, Martinez RA, Sanchez I, Luna BG, Gupta RB (2005) J Biomater Sci Polym Ed 16:473–488

    Article  Google Scholar 

  28. Li X, Wu W, Liu W (2008) Carbohydr Polym 71:394–402

    Article  CAS  Google Scholar 

  29. Liu W, Sun S, Cao Z, Zhang X, Yao K, Lu WW, Luk KDK (2005) Biomaterials 26:2705–2711

    Article  CAS  Google Scholar 

  30. Zhao SP, Cao MJ, Li LY, Xu WL (2010) Polym Degrad Stab 95:719–724

    Article  CAS  Google Scholar 

  31. Chen GH, Hoffman AS (1995) Nature 373:49–52

    Article  CAS  Google Scholar 

  32. Lutolf MP, Hubbell JA (2003) Biomacromolecules 4:713–722

    Article  CAS  Google Scholar 

  33. Gosal WS, Clark AH, Ross-Murphy SB (2004) Biomacromolecules 5:2420–2429

    Article  CAS  Google Scholar 

  34. Plunkett KN, Kraft ML, Yu Q, Moore JS (2003) Macromolecules 36:3960–3966

    Article  CAS  Google Scholar 

  35. Zhao SP, Zhou F, Li LY, Cao MJ, Zuo DY, Liu HT (2012) Compos Part B 43:1570–1578

    Article  CAS  Google Scholar 

  36. Stefancich S, Delben F (1994) Carbohyd Polym 24:17–23

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the Nature Science Foundation of Hubei Province (2010CDB04903), the Foundation of Hubei Educational Committee (Q20101603), and SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San-Ping Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, SP., Zhou, F. & Li, LY. pH- and temperature-responsive behaviors of hydrogels resulting from the photopolymerization of allylated chitosan and N-isopropylacrylamide, and their drug release profiles. J Polym Res 19, 9944 (2012). https://doi.org/10.1007/s10965-012-9944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9944-z

Keywords

Navigation