Skip to main content
Log in

The role of halloy site on crystallinity, ion conductivity, thermal and mechanical properties of poly(ethylene-oxide)/halloysite nanocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Halloysite nanotubes were applied as an inorganic filler to prepare poly(ethylene-oxide)/halloysite (PEO/halloysite) nanocomposites for the purpose of increasing the ion conductivity of PEO matrix. The resulting PEO/halloysite nanocomposites were characterized by X-ray diffraction (XRD), Fourier Transfer infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), ion conductivity test, thermogravimetry analysis (TG) and mechanical properties test. SEM and TEM micrographs confirmed the good dispersion of halloysite nanotubes in PEO matrix. FTIR spectroscopy showed that the interaction between PEO and halloysite changed the ether oxygen vibrational modes of PEO. XRD and DSC results indicated that the PEO crystallinity gradually decreased with the increment of halloysite concentration. Meanwhile, the reduced PEO crystallinity promoted the improvement of ion conductivity and the maximum value (3.8 × 10−5 S/cm) appeared at a halloysite concentration of 20 wt%. The formation of amorphous region around halloysite is beneficial for the Li+ ion conduction. Furthermore, the tensile strength of PEO/halloysite nanocomposites was enhanced when halloysite was introduced into the polymer matrix with filler loading no more than 10 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pandey K, Dwivedi MM, Singh M, Agrawal SL (2010) Studies of dielectric relaxation and a.c. conductivity in [(100−x)PEO + xNH4SCN]: Al-Zn ferrite nano composite polymer electrolyte. J Polym Res 17:127–133

    Article  CAS  Google Scholar 

  2. Dhatarwal P, Sengwa RJ (2017) Dielectric and electrical characterization of (PEO-PMMA) -LiBF4-EC plasticized solid polymer electrolyte films. J Polym Res 24:135–144

    Article  Google Scholar 

  3. Burgaz E (2011) Poly(ethylene-oxide)/clay/silica nanocomposites: morphology and thermomechanical properties. Polymer 52:5118–5126

    Article  CAS  Google Scholar 

  4. Choudhary S (2018) Effects of amorphous silica nanoparticles and polymer blend compositions on the structural, thermal and dielectric properties of PEO-PMMA blend based polymer nanocomposites. J Polym Res 25:116–140

    Article  Google Scholar 

  5. Lin D, Liu W, Liu Y, Lee HR, Hsu PC, Liu K, Cui Y (2016) High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett 16:459–465

    Article  CAS  Google Scholar 

  6. Polu AR, Rhee H-W (2016) Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12–LiTDI solid polymer electrolyte. J Ind Eng Chem 37:347–353

    Article  CAS  Google Scholar 

  7. Ibrahim S, Yasin SMM, Ng MN, Ahmad R, Johan MR (2011) Impedance spectroscopy of carbon nanotube/solid polymer electrolyte composites. Solid State Commun 151:1828–1832

    Article  CAS  Google Scholar 

  8. Ibrahim S, Yasin SMM, Ng MN, Ahmad R, Johan MR (2012) Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes. Solid State Commun 152:426–434

    Article  CAS  Google Scholar 

  9. Ounoughene G, Le Bihan O, Chivas-Joly C, Motzkus C, Longuet C, Debray B, Joubert A, Le Coq L, Lopez-Cuesta J-M (2015) Behavior and fate of halloysite nanotubes (HNTs) when incinerating PA6/HNTs nanocomposite. Environ Sci Technol 49:5450–5457

    Article  CAS  Google Scholar 

  10. Jang D, Zhang W, Choi H (2014) Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields. J Mater Sci 49:7309–7316

    Article  CAS  Google Scholar 

  11. Zeng S, Reyes C, Liu J, Rodgers PA, Wentworth SH, Sun L (2014) Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications. Polymer 55:6519–6528

    Article  CAS  Google Scholar 

  12. Zhang JJ, Zang X, Wen HJ, Dong TT, Chai JC, Li Y, Chen BB, Zhao JW, Dong SM, Ma J (2017) High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J Mater Chem A 5:4940–4948

    Article  CAS  Google Scholar 

  13. Liu MX, Jia ZX, Jia DM, Zhou CR (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525

    Article  CAS  Google Scholar 

  14. Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582

    CAS  Google Scholar 

  15. Singh B (1996) Why does halloysite roll? A new model. Clay Miner 44:191–196

    Article  CAS  Google Scholar 

  16. Frost RL, Shurvell HF (1997) Raman microprobe spectroscopy of halloysite. Clay Miner 45:68–72

    Article  CAS  Google Scholar 

  17. Yang S, Liu Z, Jiao Y, Liu Y, Ji C, Zhang Y (2014) New insight into PEO modified inner surface of HNTs and its nano-confinement within nanotube. J Mater Sci 49:4270–4278

    Article  CAS  Google Scholar 

  18. Zhen R, Chi QW, Wang XY, Yang K, Jiang Y, Li F, Xue B (2016) Crystallinity, ion conductivity, and thermal and mechanical properties of poly(ethylene oxide)–illite nanocomposites with exfoliated illite as a filler. J Appl Polym Sci 133:44226–44235

    Article  Google Scholar 

  19. Bao JJ, Shi GJ, Tao C, Wang C, Zhu C, Cheng L, Qian G, Chen CH (2018) Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries. J Power Sources 389:84–92

    Article  CAS  Google Scholar 

  20. Liu YL, Wei WL, Hsu KY, Ho WH (2004) Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis. Thermochim Acta 412:139–147

    Article  CAS  Google Scholar 

  21. Wang AL, Liu X, Wang S, Chen J, Xu H, Xing Q, Zhang LY (2018) Polymeric ionic liquid enhanced all-solid-state electrolyte membrane for high-performance lithium-ion batteries. Electrochim Acta 276:184–193

    Article  CAS  Google Scholar 

  22. Lee JH, Lim JY, Park JT, Lee JM, Kim JH (2018) Polymethacrylate-comb-copolymer electrolyte for solid-state energy storage devices. Mater Design 149:25–33

    Article  CAS  Google Scholar 

  23. Zhang YG, Zhao Y, Gosselink D, Chen P (2015) Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 21:381–385

    Article  CAS  Google Scholar 

  24. Dhakal HN, Zhang ZY, Richardson MOW (2006) Nanoindentation behaviour of layered silicate reinforced unsaturated polyester nanocomposites. Polym Test 25:846–852

    Article  CAS  Google Scholar 

  25. Tan W, Salehabadi A, Mohd Isa M, Abu Bakar M, Abu Bakar N (2016) Synthesis and physicochemical characterization of organomodified halloysite/epoxidized natural rubber nanocomposites: a potential flame-resistant adhesive. J Mater Sci 51:1121–1132

    Article  CAS  Google Scholar 

  26. Chang PR, Xie Y, Wu D, Ma X (2011) Amylose wrapped halloysite nanotubes. Carbohydr Polym 84:1426–1429

    Article  CAS  Google Scholar 

  27. Zhang H, Li CM, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM, Armand M, Zhou ZB (2017) Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev 46:797–815

    Article  CAS  Google Scholar 

  28. Agarwal M, Koelling KW, Chalmers JJ (1998) Characterization of the degradation of polylactic acid polymer in a solid substrate environment. Biotechnol Prog 14:517–526

    Article  CAS  Google Scholar 

  29. Bocchini S, Fukushima K, Blasio AD, Fina A, Frache A, Geobaldo F (2010) Polylactic acid and polylactic acid-based nanocomposite photooxidation. Biomacromolecules 11:2919–2926

    Article  CAS  Google Scholar 

  30. Madejová J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31:1–10

    Article  Google Scholar 

  31. Ratna D, Divekar S, Samui AB, Chakraborty BC, Banthia AK (2006) Poly(ethylene oxide)/clay nanocomposite: thermomechanical properties and morphology. Polymer 47:4068–4074

    Article  CAS  Google Scholar 

  32. Reddy MJ, Chu PP, Rao UVS (2006) Study of multiple interactions in mesoporous composite PEO electrolytes. J Power Sources 158:614–619

    Article  CAS  Google Scholar 

  33. Burgaz E, Yazici M, Kapusuz M, Alisir SH, Ozcan H (2014) Prediction of thermal stability, crystallinity and thermomechanical properties of poly(ethylene oxide)/clay nanocomposites with artificial neural networks. Thermochim Acta 575:159–166

    Article  CAS  Google Scholar 

  34. Wunderlich B, Macromolecular physics, Academic Press (1980) . New York pp 363–369

  35. Chen H-W, Chang F-C (2011) The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer 42:9763–9769

    Article  Google Scholar 

  36. Fan LZ, Nan C-W, Li M (2003) Thermal, electrical and mechanical properties of (PEO)16LiClO4 electrolytes with modified montmorillonites. Chem Phys Lett 369:698–702

    Article  CAS  Google Scholar 

  37. Nan C-W, Fan LZ, Lin YH, Cai Q (2003) Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys Rev Lett 91:266104

    Article  Google Scholar 

  38. Karan S, Sahu M, Sahu TB, Mahipal YK, Sahu DK, Agrawal RC (2017) Investigations on materials and ion transport properties of Zn2+ conducting nano-composite polymer electrolytes (NCPEs): [(90 PEO: 10 Zn(CF3SO3)2)+x ZnO]. Mater Today Commun 13:269–274

    Article  CAS  Google Scholar 

  39. Gurusiddappa J, Madhuri M, Suvarna RP, Dasan KP (2016) Studies on the morphology and conductivity of PEO/LiClO4. Mater Today P 3:1451–1459

    Article  Google Scholar 

  40. Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370

    Article  CAS  Google Scholar 

  41. Jia ZX, Luo YF, Guo BC, Yang BT, Du ML, Jia DM (2009) Reinforcing and flame-retardant effects of Halloysite nanotubes on LLDPE. Polym -Plast Technol 48:607–613

    Article  CAS  Google Scholar 

  42. Sonker RK, Rahul SSR (2018) ZnO nanoneedle structure based dye-sensitized solar cell utilizing solid polymer electrolyte. Mater Lett 223:133–136

    Article  CAS  Google Scholar 

  43. Xue B, Zhang PP, Jiang YS, Sun MM, Liu DR, Yu LX (2011) Preparation and characterization of linear low-density polyethylene/dickite nanocomposites prepared by the direct melt blending of linear low-density polyethylene with exfoliated dickite. J Appl Polym Sci 120:1736–1743

    Article  CAS  Google Scholar 

  44. Xue B, Jiang YS, Li GD (2013) Preparation of cu/Dickite/LLDPE nanocomposites and synergistic effect of exfoliated dickite and nano-cu in LLDPE matrix. Polym Compos 34:1061–1070

    Article  CAS  Google Scholar 

  45. Wu W, Cao XW, Zhang YJ, He GJ (2013) Polylactide/halloysite nanotube nanocomposites: thermal, mechanical properties, and foam processing. J Appl Polym Sci 130:443–452

    Article  CAS  Google Scholar 

  46. Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176

    Article  CAS  Google Scholar 

  47. Zhang ZJ, Zhang LN, Li Y, Xu HD (2005) New fabricate of styrene–butadiene rubber/montmorillonite nanocomposites by anionic polymerization. Polymer 46:129–136

    Article  CAS  Google Scholar 

  48. Ye YP, Chen HB, Wu JS, Ye L (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48:6426–6433

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Scientific Foundation of China (Grant No. 41472035 and 41702036), and Project of Science and Technology Department (Jilin Province, grant No. 20170201002GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Xue.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Chi, Q., Wang, X. et al. The role of halloy site on crystallinity, ion conductivity, thermal and mechanical properties of poly(ethylene-oxide)/halloysite nanocomposites. J Polym Res 26, 138 (2019). https://doi.org/10.1007/s10965-019-1803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1803-8

Keywords

Navigation