Skip to main content
Log in

Investigation on electrical tuneable separation properties for phase inversion polyaniline membranes doped in various acids

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Electrically tuneable polyaniline (PANI) membranes were fabricated via phase inversion and were doped primarily in various acids namely anthraquinone sulfonic acid (ASA), dodecylbenzene sulfonic acid (DBSA), maleic acid (MA) and poly(methyl vinyl ether-alt-maleic acid) (PMVEA) in comparison with secondarily HCl-doped PANI membrane as the pristine ones. It was found that the addition of different dopants in the PANI matrix changed the thickness of the membrane skin structure. From the dynamic contact angle (DCA) analysis, the PANI-ASA and pristine PANI membranes had the greatest permeation tuneability with a faster permeation rate under electric potential. For the effect of tuneable filtration, by using a modified cross-flow membrane filtration system, ASA showed the highest flux tuneability with a tuneable MWCO in the low UF range at an applied voltage of 7 V rather than at 0 V. Accordingly, the electrical tuneability assessment of the membranes has successfully demonstrated the proof of concept that the fabricated PANI membranes doped at various acids could have a different tuneable MWCO, selectivity and/or flux in a pressure filtration system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yusoff II, Rohani R, Zaman NK, Junaidi MUM, Mohammad AW, Zainal Z (2019) Durable pressure filtration membranes based on polyaniline–polyimide P84 blends. Polym Eng Sci 2019:E83–E92

    Google Scholar 

  2. Xu L, Shahid S, Holda AK, Emanuelsson EAC, Patterson DA (2018) Stimuli responsive conductive polyaniline membrane: in-filtration electrical tuneability of flux and MWCO. J Membr Sci 552:153–166

    Article  CAS  Google Scholar 

  3. Macdiarmid AG, Chiang JC, Richter AF, Epstein AJ (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18(1–3):285–290

    Article  CAS  Google Scholar 

  4. Yusoff II, Rohani R, Mohammad AW (2016) Pressure driven conducting polymer membranes derived from layer-by-layer formation and characterization: a. Rev J Eng Sci Technol 11:1183–1206

    Google Scholar 

  5. Ayad MM, Zaki EA (2008) Doping of polyaniline films with organic sulfonic acids in aqueous media and the effect of water on these doped films. Eur Polym J 44:3741–3747

    Article  CAS  Google Scholar 

  6. Gustavo MN, Marcia LAT (2008) Structure of polyaniline formed in different inorganic porous materials: a spectroscopic study. Eur Polym J 44:3501–3511

    Article  Google Scholar 

  7. Stassen I, Sloboda T, Hambitzer G (1995) Electrically modulated membrane permeability. Synth Met 71:2243–2244

    Article  CAS  Google Scholar 

  8. Sairam M, Nataraj SK, Aminabhavi TM, Roy S, Madhusoodana CD (2006) Polyaniline membranes for separation and purification of gases, liquids, and electrolyte solutions. Sep Purif Rev 35:249–283

    Article  CAS  Google Scholar 

  9. Price WE, Too C, Wallace GG, Zhou D (1999) Development of membrane systems based on conducting polymers. Synth Met 102:1338–1341

    Article  CAS  Google Scholar 

  10. Burgmayer P, Murray RW (1983) Faster Ion Gate Membranes. J Electroanal Chem 147:339–344

    Article  CAS  Google Scholar 

  11. Davey JM, Ralph SF, Too CO, Wallace GG (1999) Synthesis, characterisation and ion transport studies on polypyrrole/polyvinylphosphate conducting polymer materials. Synth Met 99(3):191–199

    Article  CAS  Google Scholar 

  12. Ariza MJ, Otero TF (2005) Ionic diffusion across oxidized polypyrrole membranes and during oxidation of the free-standing film. Colloids Surf A Physicochem Eng Asp 270-271:226–231

    Article  CAS  Google Scholar 

  13. Kiefer R, Kilmartin PA, Bowmaker GA, Cooney RP, Travas-Sejdic J (2007) Actuation of polypyrrole films in propylene carbonate electrolytes. Sensors Actuators B Chem 125(2):628–634

    Article  CAS  Google Scholar 

  14. Su TM, Ball IJ, Conklin JA, Huang S-C, Larson RK, Nguyen SL, Lew BM, Kaner RB (1997) Polyaniline/polyimide blends for pervaporation and gas separation studies. Synth Met 84(1–3):801–802

    Article  CAS  Google Scholar 

  15. Chapman P, Loh XX, Livingston AG, Li K, Oliveira TAC (2008) Polyaniline membrane for the dehydration of tetrahydrofuran by pervaporation. J Membr Sci 309:102–111

    Article  CAS  Google Scholar 

  16. Pile DL, Hillier AC (2002) Electrochemically modulated transport through a conducting polymer membrane. J Membr Sci 208:119–131

    Article  CAS  Google Scholar 

  17. Patterson DA, Lau LY, Roengpithya C, Gibbins EJ, Livingston AG (2008) Membrane selectivity in the organic solvent nanofiltration of trialkylamine bases. Desalination 218(1–3):248–256

    Article  CAS  Google Scholar 

  18. Yusoff II, Rohani R, Mohammad AW (2016) Investigation of the formation characteristics of polyaniline and its application in forming free-standing pressure filtration membranes. J Polym Res 23:1–13

    Article  CAS  Google Scholar 

  19. Idris A, Zain NM (2006) Effect of heat treatment on the performance and structural details of polyethersulfone ultrafiltration membranes. J Teknol 44:27–40

    Google Scholar 

  20. Kim KJ, Fanen AG, Ben Aimb R, Liub MG, Jonsson G, TessaroC IC, Broekd AP, Bargemand D (1994) A comparative study of techniques used for porous membrane characterization: pore characterization. J Membr Sci 87:35–46

    Article  CAS  Google Scholar 

  21. Wang X-L, Shang W-J, Wang D-X, Wu L, Tu C-H (2009) Characterization and applications of nanofiltration membranes: state of the art. Desalination 236:316–326

    Article  CAS  Google Scholar 

  22. Loh XX, Sairam M, Bismarck A, Steinke JHG, Livingston AG, Li K (2009) Crosslinked integrally skinned asymmetric polyaniline membranes for use in organic solvents. J Membr Sci 326:635–642

    Article  CAS  Google Scholar 

  23. Zhao S, Wang Z, Wang J, Yang S, Wang S (2011) PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP. J Membr Sci 376(1–2):83–95

    Article  CAS  Google Scholar 

  24. Sairam M, Loh XX, Li K, Bismarck A, Steinke JHG, Livingston AG (2009) Nanoporous asymmetric polyaniline films for filtration of organic solvents. J Membr Sci 330:166–174

    Article  CAS  Google Scholar 

  25. Lira LM, SICd T (2005) Conducting polymer-hydrogel composites for electrochemical release devices: synthesis and characterization of semi-interpenetrating polyaniline-polyacrylamide networks. Electrochem Commun 7(7):717–723

    Article  CAS  Google Scholar 

  26. Richard B, Nigel JC, Sarah HC (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353

    Article  Google Scholar 

  27. Xu L, Chen W, Mulchandani A, Yan Y (2005) Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew Chem Int Ed 44(37):6009–6012

    Article  CAS  Google Scholar 

  28. Schaep J (1999) Nanofiltration for the removal of ionic components from water. Ph.D. Thesis, Katholieke Universiteit Leuven, Heverlee, Belgium

  29. Crocker P (1997) Super stable nanofiltration gives almost total recovery. Manuf Chem:29–30

  30. Yusoff II, Rohani R, Mohammad AW (2017) Molecular weight cut-off determination of pressure filtration membranes via colorimetric detection method. Malays J Anal Sci 21:484–495

    Article  Google Scholar 

  31. Rohani R, Hyland M, Patterson D (2011) A refined one-filtration method for aqueous based Nanofiltration and UltraFiltration membrane molecular weight cut-off determination using polyethylene glycols. J Membr Sci 382(1–2):278–290

    Article  CAS  Google Scholar 

  32. Yin W, Ruckenstein E (2000) Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid. Synth Met 108:39–46

    Article  CAS  Google Scholar 

  33. Zhang L, Peng H, Sui J, Kilmartin PA, Travas-Sejdic J (2008) Polyaniline nanotubes doped with polymeric acids. Curr Appl Phys 8:312–315. https://doi.org/10.1016/j.cap.2007.10.070

    Article  Google Scholar 

  34. Rohani R, Yusoff II, Efdi FAM, Junaidi MUM (2017) Polyaniline composite membranes synthesis in presence of various acid dopants for pressure filtration. J Kejuruteraan (UKM Eng J) 29:1–13

    Article  Google Scholar 

  35. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810

    Article  CAS  Google Scholar 

  36. Terlemezyan L, Mokreva P, Tsocheva D, Peneva S, Berovsky K, Troev T (2008) Detection of free volumes in polyaniline complexes with various acids by using positron lifetime spectroscopy. Radiat Phys Chem 77:591–596

    Article  CAS  Google Scholar 

  37. Green DW, Perry RE (1984) Perry's chemical Engineer's handbook. 8th Edition Ed. The McGraw-Hill Companies, Inc.

  38. Ball IJ, Huang S-C, Su TM, Kaner RB (1997) Permselectivity and temperature-dependent permeability of polyaniline membranes. Synth Met 84:799–800

    Article  CAS  Google Scholar 

  39. Ho KC, Teow YH, Mohammad AW, Ang WL, Lee PH (2018) Development of graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposite conductive membranes for electrically enhanced fouling mitigation. J Membr Sci 552:189–201

    Article  CAS  Google Scholar 

  40. Chung YT, Ng LY, Mohammad AW (2014) Sulfonated-polysulfone membrane surface modification by employing methacrylic acid through UV-grafting: optimization through response surface methodology approach. J Ind Eng Chem 20:1549–1557

    Article  CAS  Google Scholar 

  41. See-Toh YH, Silva M, Livingston A (2008) Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes. J Membr Sci 324:220–232

    Article  CAS  Google Scholar 

  42. Soroko I, Bhole Y, Livingston AG (2011) Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes. Green Chem 13:162–168

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Fundamental Research Grant Scheme (FRGS/1/2018/TK02/UKM/02/2) by Ministry of Higher Education (MOHE) and Research University Grant (GUP-2016-086) of Universiti Kebangsaan Malaysia (UKM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosiah Rohani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohani, R., Yusoff, I.I. Investigation on electrical tuneable separation properties for phase inversion polyaniline membranes doped in various acids. J Polym Res 26, 125 (2019). https://doi.org/10.1007/s10965-019-1796-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1796-3

Keywords

Navigation