Skip to main content
Log in

Towards electrically tunable nanofiltration membranes: polyaniline-coated polyvinylidene fluoride membranes with tunable permeation properties

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Conductive polyaniline (PANI)-coated polyvinylidene fluoride (PVDF) composite nanofiltration (NF) membranes were synthesized by an in situ chemical oxidative interfacial polymerization (solution and diffusion cell polymerization) to produce pressure filtration membranes with tunable separation selectivity through applying an external electrical potential. The diffusion cell polymerization technique was found to be superior with ability to coat a greater thin layer PANI film (120% mass increase) than solution polymerization (13% mass increase) after 48 h of reaction time. Furthermore, the conductivity of the PANI membrane synthesized by diffusion cell polymerization was far higher than that of the solution polymerization membrane, which was up to 6.711 S/cm compared to 7.61 × 10–2 S/cm, respectively, showing that a continuous film with good electrical connectivity has been formed. Meanwhile, a modified dynamic contact angle test showed that the membranes were electrically tunable with about 30–40% decrement on the contact angle values after an external electrical potential was applied. Moreover, the membranes with a complete surface PANI coverage (around 30–80 mass percentages) confirmed to have their permeability for neutral species (polyethylene glycols) electrically tuned under cross-flow conditions. Overall, this work demonstrated that the diffusion cell polymerization method produced membranes that have the potential to be applied as electrically tunable NF membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mishra AK (2018) Conducting polymers: concepts and applications. J At Mol Condens Nano Phys 5:159–193

    Article  Google Scholar 

  2. Taghizadeh MJ, Afghihi S, Saidi H (2018) Superhydrophobic surface based silica nanoparticle modified with diisocyanate and short and long normal chain alcohols. Asian J Nanosci Mat 1:71–77

    Google Scholar 

  3. Pellegrino J (2013) The use of conducting polymers in membrane-based separations. Ann N Y Acad Sci 984:289–305

    Article  Google Scholar 

  4. Carquigny S, Sanchez JB, Berger F, Lakard B, Lallemand F (2009) Ammonia gas sensor based on electrosynthesized polypyrrole films. Talanta 78:199–206

    Article  CAS  PubMed  Google Scholar 

  5. Zhao F, Shi Y, Pan L, Yu G (2017) Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications. Acc Chem Res 50:1734–1743

    Article  CAS  PubMed  Google Scholar 

  6. Cindrella L, Kannan AM (2009) Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions. J Power Sources 193:447–453

    Article  CAS  Google Scholar 

  7. Magu TO, Agobi AU, Hitler L, Dass PM (2019) A review on conducting polymers-based composites for energy storage application. J Chem Rev 1:19–34

    Article  Google Scholar 

  8. Kumar S, Kumar S, Chakarvarthi SK (2004) Non-galvanic synthesis of nanowalled polypyrrole microtubules in ion track membrane. Phys Lett A 327:198–201

    Article  CAS  Google Scholar 

  9. Boeva ZA, Sergeyev VG (2014) Polyaniline: synthesis, properties, and application. Polym Sci Ser C 56:153–164

    Article  CAS  Google Scholar 

  10. Kaynak A, Rintoul L, George G (2000) Change of mechanical and electrical properties of polypyrrole films with dopant concentration and oxidative aging. Mat Res Bull 35:813–824

    Article  CAS  Google Scholar 

  11. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353

    Article  CAS  PubMed  Google Scholar 

  12. Sarihan A, Shahid S, Shen J, Amura I, Patterson DA, Emanuelsson EAC (2019) Exploiting the electrical conductivity of poly-acid doped polyaniline membranes with enhanced durability for organic solvent nanofiltration. J Membrane Sci 579:11–21

    Article  CAS  Google Scholar 

  13. Xu LL, Xu Y, Liu L, Wang KP, Patterson DA, Wang J (2019) Electrically responsive ultrafiltration polyaniline membrane to solve fouling under applied potential. J Membrane Sci 572:442–452

    Article  CAS  Google Scholar 

  14. Ho KC, Teow YH, Mohammad AW (2019) Optimization of nanocomposite conductive membrane formulation and operating parameters for electrically-enhanced palm oil mill effluent filtration using response surface methodology. Process Saf Enviro 126:297–308

    Article  CAS  Google Scholar 

  15. Pile DL, Hillier AC (2002) Electrochemically modulated transport through a conducting polymer membrane. J Membrane Sci 208:119–131

    Article  CAS  Google Scholar 

  16. Xu L, Shahid S, Holda AK, Emanuelsson EAC, Patterson DA (2018) Stimuli responsive conductive polyaniline membrane: In-filtration electrical tuneability of flux and MWCO. J Membrane Sci 552:153–166

    Article  CAS  Google Scholar 

  17. Patterson DA, Lau LY, Roengpithya C, Gibbins EJ, Livingston AG (2008) Membrane selectivity in the organic solvent nanofiltration of trialkylamine bases. Desalination 218:248–256

    Article  CAS  Google Scholar 

  18. Yusoff II, Rohani R, Mohammad AW (2016) Investigation of the formation characteristics of polyaniline and its application in forming free-standing pressure filtration membranes. J Polym Res 23:1–13

    Article  CAS  Google Scholar 

  19. Idris A, Zain NM (2006) Effect of heat treatment on the performance and structural details of polyethersulfone ultrafiltration membranes. J Teknol 44:27–40

    Google Scholar 

  20. Rohani R, Yusoff II (2019) Investigation on electrical tunable separation properties for phase inversion polyaniline membranes doped in various acids. J Polym Res 26:125–137

    Article  CAS  Google Scholar 

  21. Ariza MJ, Otero TF (2005) Ionic diffusion across oxidized polypyrrole membranes and during oxidation of the free-standing film. Colloids Surf A 270–271:226–231

    Article  CAS  Google Scholar 

  22. Loh XX, Sairam M, Bismarck A, Steinke JHG, Livingston AG, Li K (2009) Crosslinked integrally skinned asymmetric polyaniline membranes for use in organic solvents. J Membrane Sci 326:635–642

    Article  CAS  Google Scholar 

  23. Sairam M, Loh XX, Li K, Bismarck A, Steinke JHG, Livingston AG (2009) Nanoporous asymmetric polyaniline films for filtration of organic solvents. J Membrane Sci 330:166–174

    Article  CAS  Google Scholar 

  24. Zhao S, Wang Z, Wang J, Yang S, Wang S (2011) PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP. J Membrane Sci 376:83–95

    Article  CAS  Google Scholar 

  25. Lira LM, de Torresi SIC (2005) Conducting polymer-hydrogel composites for electrochemical release devices: synthesis and characterization of semi-interpenetrating polyaniline-polyacrylamide networks. Electrochem Commun 7:717–723

    Article  CAS  Google Scholar 

  26. Xu L, Chen W, Mulchandani A, Yan Y (2005) Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew Chem Int Ed 44:6009–6012

    Article  CAS  Google Scholar 

  27. Blinova NV, Stejskal J, Trchova M, Prokea J (2008) Control of polyaniline conductivity and contact angles by partial protonation. Polym Int 57:66–69

    Article  CAS  Google Scholar 

  28. Liu M, Nie FQ, Wei Z, Song Y, Jiang L (2010) In situ electrochemical switching of wetting state of oil droplet on conducting polymer films. Langmuir 26:3993–3997

    Article  CAS  PubMed  Google Scholar 

  29. Ivanov S, Mokreva P, Tsakova V, Terlemezyan L (2003) Electrochemical and surface structural characterization of chemically and electrochemically synthesized polyaniline coatings. Thin Solid Films 441:44–49

    Article  CAS  Google Scholar 

  30. Wang HL, Gao J, Sansinena JM, Mc Carthy P (2002) Fabrication and characterization of polyaniline monolithic actuators based on a novel configuration: integrally skinned asymmetric membrane. Chem Mater 14:2546–2552

    Article  CAS  Google Scholar 

  31. Liu MJ, Tzou K, Gregory RV (1994) Influence of the doping conditions on the surface energies of conducting polymers. Synth Met 63:67–71

    Article  CAS  Google Scholar 

  32. Lu X, Zhang W, Wang C, Wen TC, Wei Y (2011) One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Prog Polym Sci 36:671–712

    Article  CAS  Google Scholar 

  33. Mirmohseni A, Wallace GG (2003) Preparation and characterization of processable electroactive polyaniline-polyvinyl alcohol composite. Polym Int 44:3523–3528

    Article  CAS  Google Scholar 

  34. Shan W, Bacchin P, Aimar P, Bruening ML, Tarabara VV (2010) Polyelectrolyte multilayer films as backflushable nanofiltration membranes with tunable hydrophilicity and surface charge. J J Membrane Sci 349:268–278

    Article  CAS  Google Scholar 

  35. Ma M, Hill RM (2006) Superhydrophobic surfaces. Curr Opin Coll Interface Sci 11:193–202

    Article  CAS  Google Scholar 

  36. Lifton VA, Taylor JA, Vyas B, Kolodner P, Cirelli R, Basavanhally N, Papazian A, Frahm R, Simon S, Krupenkin T (2008) Superhydrophobic membranes with electrically controllable permeability and their application to “smart” microbatteries. Appl Phys Lett 93:1–3

    Article  CAS  Google Scholar 

  37. Negi YS, Adhyapak PV (2002) Development in polyaniline conducting polymers. Polym Rev C42:35–53

    CAS  Google Scholar 

  38. Rohani R, Yusoff II, Efdi FAM, Junaidi MUM (2017) Polyaniline composite membranes synthesis in presence of various acid dopants for pressure filtration. J Kejuruteraan 29:1–13

    Article  Google Scholar 

  39. Rohani R, Hyland M, Patterson D (2011) A refined one-filtration method for aqueous based nanofiltration and ultra filtration membrane molecular weight cut-off determination using polyethylene glycols. J Membrane Sci 382:278–290

    Article  CAS  Google Scholar 

  40. Qaiser AA, Hyland MM, Patterson DA (2009) Control of polyaniline deposition on microporous cellulose ester membranes by in situ chemical polymerization. J Phys Chem B 13:14986–149931

    Article  CAS  Google Scholar 

  41. Ibrahim F, Rohani R, Mohammad AW (2016) Polyaniline multi-coated onto polyvinylidene fluoride and silicon elastomer for pressure filtration membranes. Malaysian J Anal Sci 6:1498–1509

    Google Scholar 

  42. Avlyanov JK, Min Y, Mac Diarmid AG, Epstein AJ (1995) Polyaniline: conformational changes induced in solution by variation of solvent and doping level. Synth Met 72:65–71

    Article  CAS  Google Scholar 

  43. Patterson DA, Havill A, Costello S, See-Toh YH, Livingston AG, Turner A (2009) Membrane characterisation by SEM, TEM and ESEM: The implications of dry and wetted microstructure on mass transfer through integrally skinned polyimide nanofiltration membranes. Sep Purif Technol 66:90–97

    Article  CAS  Google Scholar 

  44. Schäfer AI, Andritsos N, Karabelas AJ, Hoek EMV, Schneider R, Nyström M (2004) Fouling in nanofiltration. In: Schäfer AI, Waite TD, Fane AG (eds) Nanofiltration—principles and applications. Elsevier, Amsterdam.

  45. Agenson KO, Urase T (2007) Change in membrane performance due to organic fouling sin nanofiltration (NF)/reverse osmosis (RO) applications. Sep Purif Technol 55:147–156

    Article  CAS  Google Scholar 

  46. Yusoff II, Rohani R, Zaman NK, Junaidi MUM, Mohammad AW, Zainal Z (2019) Durable pressure filtration membranes based on polyaniline–polyimide P84 blends. Polym Eng Sci 2019:E83–E92

    Google Scholar 

  47. Ball IJ, Huang SC, Wolf RA, Shimano JY, Kaner RB (2000) Pervaporation studies with polyaniline membranes and blends. J Membrane Sci 174:161–176

    Article  CAS  Google Scholar 

  48. See-Toh YH, Silva M, Livingston A (2008) Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes. J Membrane Sci 324:220–232

    Article  CAS  Google Scholar 

  49. Soroko I, Bhole Y, Livingston AG (2011) Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes. Green Chem 13:162–168

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Research University Grant (GUP-086-2016) and Ministry of Higher Education for Fundamental Research Grant Scheme (FRGS/1/2018/TK02/UKM/02/2) and also support from Research Center for Sustainable Process Technology of Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosiah Rohani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohani, R., Yusoff, I.I. Towards electrically tunable nanofiltration membranes: polyaniline-coated polyvinylidene fluoride membranes with tunable permeation properties. Iran Polym J 28, 789–800 (2019). https://doi.org/10.1007/s13726-019-00744-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00744-0

Keywords

Navigation