Skip to main content

Advertisement

Log in

Synthesis and characterisation of polyaniline and/or MoO2/graphite composites from deep eutectic solvents via chemical polymerisation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Novel polyaniline (Pani) and/or graphite (Gr)/molybdenum dioxide (MoO2) composites have been successfully synthesised via an in situ chemical polymerisation method using a Deep Eutectic Solvent (DES) as the electrolyte. The chemical structure and properties of the Pani composites were characterised using various analytical techniques such as Raman, FTIR and UV–Vis spectroscopies, Thermo-Gravimetric Analysis (TGA), X-ray diffraction (XRD) and conductivity measurements, confirming its semi-crystalline nature. The results show shifts in the Raman, XRD and FTIR spectral features associated with the Pani composites, indicating that a matrix of metal oxide and/or graphite had formed in the polymer. Higher electrical conductivity was observed for the Pani/Gr (5.58 S cm−1) and Pani/Gr/MoO2 (9.87 S cm−1) composites compared to pure Pani (1.25 S cm−1). The homogenous growth of Pani chains on the graphite and MoO2 network were clearly observed by Scanning Electron Microscopy (SEM) and Energy Dispersive Analysis by X-ray (EDAX). A larger surface area and greater porosity were achieved in the Pani/MoO2, Pani/Gr/MoO2 and Pani/Gr samples, while a more compact structure was obtained for the Pani sample. These findings support that the idea that the polymer/graphite composites would be more useful for electrochemical charge transport, supercapacitance and energy storage applications compared to those using the pure polymer alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Girija TC, Sangaranarayanan MV (2006) Investigation of polyaniline-coated stainless steel electrodes for electrochemical supercapacitors. Synth Met 156:244–250. https://doi.org/10.1016/j.synthmet.2005.12.006

    Article  CAS  Google Scholar 

  2. Yazdi MK, Motlagh GH, Garakani SS, Boroomand A (2018) Effect of multiwall carbon nanotubes on the polymerization model of aniline. J Polym Res 25(265). https://doi.org/10.1007/s10965-018-1655-7

  3. Rosa AC de A, Correa CM, Faez R, Bizeto MA, Martins TS, Camilo FF (2018) Direct synthesis of silver nanoparticles and polyaniline into the Mesopores of SBA-15. J Polym Res 25(182). https://doi.org/10.1007/s10965-018-1557-8

  4. Sazou D, Kosseoglou D (2006) Corrosion inhibition by Nafion®-polyaniline composite films deposited on stainless steel in a two-step process. Electrochim Acta 51:2503–2511. https://doi.org/10.1016/j.electacta.2005.07.033

    Article  CAS  Google Scholar 

  5. Konwer S, Begum A, Bordoloi S, Boruah R (2017) Expanded graphene-oxide encapsulated polyaniline composites as sensing material for volatile organic compounds. J Polym Res 24:37–47. https://doi.org/10.1007/s10965-017-1195-6

    Article  CAS  Google Scholar 

  6. Holze R, Wu Y (2014) Intrinsically conducting polymers in electrochemical energy technology: trends and progress. Electrochim Acta 122:93–107. https://doi.org/10.1016/j.electacta.2013.08.100

    Article  CAS  Google Scholar 

  7. Hillman AR, Mohamoud MA (2006) Ion, solvent and polymer dynamics in polyaniline conducting polymer films. Electrochim Acta 5:6018–6024. https://doi.org/10.1016/j.electacta.2005.11.054

    Article  CAS  Google Scholar 

  8. Alesary HF, Ismail HK, Khudhair AF, Mohammed MQ (2018) Effects of dopant ions on the properties of polyaniline conducting polymer. Orient J Chem 34(5):2525–2533. https://doi.org/10.13005/ojc/340539

    Article  CAS  Google Scholar 

  9. de Maranhao SLA, Torresi RM (1999) Quartz crystal microbalance study of charge compensation process in polyaniline films doped with surfactant anions. Electrochim Acta, 44:1879–1885. https://doi.org/10.1016/S0013-4686(98)00329-6

  10. Baba A, Tian S, Stefani F, Xia C, Wang Z, Advincula RC, Johannsmann D, Knoll W (2004) Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance. J Electroanal Chem 562:95–103. https://doi.org/10.1016/j.jelechem.2003.08.012

    Article  CAS  Google Scholar 

  11. Bauermann LP, Bartlett PN (2005) EQCM measurements of the ion and solvent flux in thin poly (aniline)–poly (styrenesulfonate) films during redox switching. Electrochim Acta 50:1537–1546. https://doi.org/10.1016/j.electacta.2004.10.011

    Article  CAS  Google Scholar 

  12. Oh M, Park SJ, Jung Y, Kim S (2012) Electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution. Synth Met 162:695–701. https://doi.org/10.1016/j.synthmet.2012.02.021

    Article  CAS  Google Scholar 

  13. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153:413–418. https://doi.org/10.1016/j.jpowsour.2005.05.030

    Article  CAS  Google Scholar 

  14. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493. https://doi.org/10.1016/j.carbon.2009.09.066

    Article  CAS  Google Scholar 

  15. Lee H, Kim H, Cho MS, Choi J, Lee Y (2011) Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochim Acta 56:7460–7466. https://doi.org/10.1016/j.electacta.2011.06.113

    Article  CAS  Google Scholar 

  16. Shakir I, Shahid M, Rana UA, Warsi MF (2014) In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors. RSC Adv 4:8741. https://doi.org/10.1039/C3RA44837A

    Article  CAS  Google Scholar 

  17. Guan D, Gao X, Li J, Yuan C (2014) Enhanced capacitive performance of TiO2 nanotubes with molybdenum oxide coating. Appl Surf Sci 300:165–170. https://doi.org/10.1016/j.apsusc.2014.02.029

    Article  CAS  Google Scholar 

  18. Xia X, Hao Q, Lei W, Wang W, Wang H, Wang X (2012) Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: synthesis and properties. J Mater Chem 22:8314. https://doi.org/10.1039/C2JM16216D

    Article  CAS  Google Scholar 

  19. Lim YS, Tan YP, Lim HN, Huang NM, Tan WT (2013) Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance. J Polym Res 20:156. https://doi.org/10.1007/s10965-013-0156-y

    Article  CAS  Google Scholar 

  20. Sahoo S, Karthikeyan G, Nayak GC, Das CK (2011) Electrochemical characterization of in situ polypyrrole coated graphene nanocomposites. Synth Met 161:1713–1719. https://doi.org/10.1016/j.synthmet.2011.06.011

    Article  CAS  Google Scholar 

  21. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. https://doi.org/10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  22. Ningaraju S, Ravikumar HB (2017) Studies on electrical conductivity of PVA/graphite oxide nanocomposites: a free volume approach. J Polym Res 24:11. https://doi.org/10.1007/s10965-016-1176-1

    Article  CAS  Google Scholar 

  23. Abdul Saboor KAN, Jan R, Sharif S, Khan M (2018) Mechanical, dielectric and EMI shielding response of styrene acrylonitrile, styrene acrylonitrile/polyaniline polymer blends, upon incorporationof few layer graphene at low filler loadings. J Polym Res 25(248). https://doi.org/10.1007/s10965-018-1648-6

  24. Ali SR, Ma Y, Parajuli RR, BalogunY LWYC, He H (2007) A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem 79:2583–2587. https://doi.org/10.1021/ac062068o

    Article  CAS  PubMed  Google Scholar 

  25. Meng C, Liu C, Fan S (2009) Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochem Commun 11:186–189. https://doi.org/10.1016/j.elecom.2008.11.005

    Article  CAS  Google Scholar 

  26. King RCY, Roussel F, Brund JF, Gors C (2012) Carbon nanotube-polyaniline nanohybrids: influence of the carbon nanotube characteristics on the morphological, spectroscopic. electrical and thermoelectric Synthetic Metals 162:1348–1356. https://doi.org/10.1016/j.synthmet.2012.05.029

    Article  CAS  Google Scholar 

  27. Yang C, Wang X, Du P, Liu P (2013) Polyaniline/carbon nanotube multi-layered hollow microspheres with sandwich structure and their electrochemical performance. Synth Met 179:34–41. https://doi.org/10.1016/j.synthmet.2013.07.014

    Article  CAS  Google Scholar 

  28. Wang Q, Qian X, Wang S, Zhou W, Guo H, Wu X, Li J, Wang X (2015) Conductive polyaniline composite films from aqueous dispersion: performance enhancement by multi-walled carbon nanotube. Synth Met 199:1–7. https://doi.org/10.1016/j.synthmet.2014.11.007

    Article  CAS  Google Scholar 

  29. Saranya S, Selvan RK, Priyadharsini N (2012) Synthesis and characterization of polyaniline/MnWO4 nanocomposites as electrodes for pseudocapacitors. Appl Surf Sci 258:4881–4887. https://doi.org/10.1016/j.apsusc.2012.01.104

    Article  CAS  Google Scholar 

  30. An H, Wang Y, Wang X, Zheng L, Wang X, Yi L, Bai L, Zhang X (2010) Polypyrrole/carbon aerogel composite materials for supercapacitor. J Power Sources 195:6964–6969. https://doi.org/10.1016/j.jpowsour.2010.04.074

    Article  CAS  Google Scholar 

  31. Ghosh D, Giri S, Mandal A, Das CK (2013) H+, Fe3+ codoped polyaniline/MWCNTs nanocomposite: Superior electrode material for supercapacitor application. Appl Surf Sci 276:120–128. https://doi.org/10.1016/j.apsusc.2013.03.044

    Article  CAS  Google Scholar 

  32. Jo Y, Cho WJ, Inamdar AI, Kim BC, Kim J, Kim H, Im H, Yu KH, Kim DY (2014) Electrochemical supercapacitor properties of polyaniline thin films in organic salt added electrolytes. J Appl Polym Sci 131:40306. https://doi.org/10.1002/app.40306

    Article  CAS  Google Scholar 

  33. Tagowska M, Pałys B, Jackowska K (2004) Polyaniline nanotubules—anion effect on conformation and oxidation state of polyaniline studied by Raman spectroscopy. Synth Met 142:223–229. https://doi.org/10.1016/j.synthmet.2003.09.001

    Article  CAS  Google Scholar 

  34. Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11:1158–1161. https://doi.org/10.1016/j.elecom.2009.03.036

    Article  CAS  Google Scholar 

  35. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun:70–71. https://doi.org/10.1039/B210714G

  36. Abbott AP, Capper G, Davies DL, Rasheed R (2004) Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures. Inorg Chem 43:3447–3452. https://doi.org/10.1021/ic049931s

    Article  CAS  PubMed  Google Scholar 

  37. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Q, Vigier KDO, Royer S, Jerome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146. https://doi.org/10.1039/C2CS35178A

    Article  CAS  PubMed  Google Scholar 

  39. Hillman AR, Ryder KS, Ismail HK, Unal A, Voorhaar A (2017) Fundamental aspects of electrochemically controlled wetting of nanoscale composite materials. Faraday Discuss 199:75–99. https://doi.org/10.1039/C7FD00060J

    Article  CAS  PubMed  Google Scholar 

  40. Innis P, Mazurkiewicz J, Nguyen T, Wallace GG, MacFarlane D (2004) Enhanced electrochemical stability of polyaniline in ionic liquids. Curr Appl Phys 4:389–393. https://doi.org/10.1016/j.cap.2003.11.056

    Article  Google Scholar 

  41. Hillman AR, Ryder KS, Zaleski CJ, Ferreira V, Beasley CA, Vieil E (2014) Application of the combined electrochemical quartz crystal microbalance and probe beam deflection technique in deep eutectic solvents. Electrochim Acta 135:42–51. https://doi.org/10.1016/j.electacta.2014.04.062

    Article  CAS  Google Scholar 

  42. Abbott AP, Capper G, McKenzie KJ, Ryder KS (2007) Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride. J Electroanal Chem 599:288–294. https://doi.org/10.1016/j.jelechem.2006.04.024

    Article  CAS  Google Scholar 

  43. Abbott AP, Barron JC, Ryder KS, Wilson D (2007) Eutectic-based ionic liquids with metal-containing anions and cations. Chem Eur J 13:6495–6501. https://doi.org/10.1002/chem.200601738

    Article  CAS  PubMed  Google Scholar 

  44. Michaelson L (2015) Advances in conducting polymers research, polymer science and technology series. Nova Science Publishers, Inc., New York

    Google Scholar 

  45. Markovic MG, Matisons JG, Cervini R, Simon GP, Fredericks PM (2006) Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization. Chem Mater 18:6258–6265. https://doi.org/10.1021/cm061344c

    Article  CAS  Google Scholar 

  46. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) Effect of graphene oxide on the properties of its composite with polyaniline. Appl Mater Interfaces 2:821–828. https://doi.org/10.1021/am900815k

    Article  CAS  Google Scholar 

  47. Bian LJ, He HL, Liu XX (2015) Self-doped polyaniline/molybdenum oxide composite nanorods for supercapacitors. RSC Adv 5:75374–75379. https://doi.org/10.1039/C5RA12075F

    Article  CAS  Google Scholar 

  48. Bian LJ, Zhang JH, Qi J, Liu XX, Dermot D, Lau KT (2010) Immobilization of molybdenum oxide in polyaniline and electrocatalytic properties of the composite modified electrode. Sensors Actuators B Chem 147:73–77. https://doi.org/10.1016/j.snb.2010.03.043

    Article  CAS  Google Scholar 

  49. Wang S, Gao Q, Zhang Y, Gao J, Sun X, Tang Y (2011) Controllable synthesis of organic–inorganic hybrid MoOx/polyaniline nanowires and nanotubes. Chem Eur J 17:1465–1472. https://doi.org/10.1002/chem.201002750

    Article  CAS  PubMed  Google Scholar 

  50. Yang Y, Diao MH, Gao MM, Sun XF, Liu XW, Zhang GH, Qi Z, Wang SG (2014) Facile preparation of graphene/polyaniline composite and its application for electrocatalysis hexavalent chromium reduction. Electrochim Acta 132:496–503. https://doi.org/10.1016/j.electacta.2014.03.152

    Article  CAS  Google Scholar 

  51. Bourdo SE, Viswanathan T (2005) Graphite/polyaniline (GP) composites: synthesis and characterization. Carbon 43:2983–2988. https://doi.org/10.1016/j.carbon.2005.06.016

    Article  CAS  Google Scholar 

  52. Chen GL, Shau SM, Juang TY, Lee RH, Chen CP, Suen SY, Jeng RJ (2011) Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation. Langmuir 27:14563–14569. https://doi.org/10.1021/la203253m

    Article  CAS  PubMed  Google Scholar 

  53. Bissessur R, Liu PKY, Scully SF (2006) Intercalation of polypyrrole into graphite oxide. Synth Met 156:1023–1027. https://doi.org/10.1016/j.synthmet.2006.06.024

    Article  CAS  Google Scholar 

  54. Du XS, Xiao M, Meng YZ (2004) Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur Polym J 40:1489–1493. https://doi.org/10.1016/j.eurpolymj.2004.02.009

    Article  CAS  Google Scholar 

  55. Mi H, Zhang X, An S, Ye X, Yang S (2007) Microwave-assisted synthesis and electrochemical capacitance of polyaniline/multi-wall carbon nanotubes composite. Electrochem Commun 9:2859–2862. https://doi.org/10.1016/j.elecom.2007.10.013

    Article  CAS  Google Scholar 

  56. Feng X, Chen N, Zhou J, Huang Z, Zhang L, Ma Y, Wang L, Yan X (2015) Facile synthesis of shape-controlled graphene–polyaniline composites for high performance supercapacitor electrode materials. New J Chem 39:2261–2268. https://doi.org/10.1039/C4NJ01843E

    Article  CAS  Google Scholar 

  57. Mitra M, Kulsi C, Chatterjee K, Kargupta K, Ganguly S, Banerjee D, Goswami S (2015) Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications. RSC Adv 5:31039–31048. https://doi.org/10.1039/C5RA01794G

    Article  CAS  Google Scholar 

  58. Ansari MO, Khan MM, Ansari SA, Amal I, Lee J, Cho MH (2014) pTSA doped conducting graphene/polyaniline nanocomposite fibers: thermoelectric behavior and electrode analysis. Chem Eng J 242:155–161. https://doi.org/10.1016/j.cej.2013.12.033

    Article  CAS  Google Scholar 

  59. Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI, Gomes VG (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8. https://doi.org/10.1016/j.compscitech.2014.04.007

    Article  CAS  Google Scholar 

  60. Lin YC, Hsu FH, Wu TM (2013) Enhanced conductivity and thermal stability of conductive polyaniline/graphene composite synthesized by in situ chemical oxidation polymerization with sodium dodecyl sulfate. Synth Met 184:29–34. https://doi.org/10.1016/j.synthmet.2013.10.001

    Article  CAS  Google Scholar 

  61. Lu Y, Song Y, Wang F (2013) Thermoelectric properties of graphene nanosheets-modified polyaniline hybrid nanocomposites by an in situ chemical polymerization. Mater Chem Phys 138:238–244. https://doi.org/10.1016/j.matchemphys.2012.11.052

    Article  CAS  Google Scholar 

  62. Inzelt G (2008) Conducting polymers: a new era in electrochemistry. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  63. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401. https://doi.org/10.1021/cm902876u

    Article  CAS  Google Scholar 

  64. Wu TM, Lin YW, Liao CS (2005) Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 43:734–740. https://doi.org/10.1016/j.carbon.2004.10.043

    Article  CAS  Google Scholar 

  65. Wu TM, Lin YW (2006) Doped polyaniline/multi-walled carbon nanotube composites: preparation, characterization and properties. Polymer 47:3576–3582. https://doi.org/10.1016/j.polymer.2006.03.060

    Article  CAS  Google Scholar 

  66. Du XS, Zhou CF, Mai YW (2008) Facile synthesis of hierarchical polyaniline nanostructures with dendritic nanofibers as scaffolds. J Phys Chem C 112:19836–19840. https://doi.org/10.1021/jp8069404

    Article  CAS  Google Scholar 

  67. Das AK, Karan SK, Khatua BB (2015) High energy density ternary composite electrode material based on polyaniline (PANI), molybdenum trioxide (MoO3) and graphene nanoplatelets (GNP) prepared by sono-chemical method and their synergistic contributions in superior supercapacitive performance. Electrochim Acta 180:1–15. https://doi.org/10.1016/j.electacta.2015.08.029

    Article  CAS  Google Scholar 

  68. Campos TLA, Kersting DF, Ferreira CA (1999) Chemical synthesis of polyaniline using sulphanilic acid as dopant agent into the reactional medium. Surf Coat Technol 122:3–5. https://doi.org/10.1016/S0257-8972(99)00399-0

    Article  CAS  Google Scholar 

  69. Dimitriev OP (2004) Doping of polyaniline by transition-metal salts. Macromolecules 37:3388–3395. https://doi.org/10.1021/ma035677w

    Article  CAS  Google Scholar 

  70. Tang L, Duan F, Chen M (2016) Fabrication of ferric chloride doped polyaniline/multilayer super-short carbon nanotube nanocomposites for supercapacitor applications. J Solid State Electrochem 20:2805–2816. https://doi.org/10.1007/s10008-016-3264-x

    Article  CAS  Google Scholar 

  71. Elnaggar EM, Kabel KI, Farag AA, Al-Gamal AG (2017) Fabrication of ferric chloride doped polyaniline/multilayer super-short carbon nanotube nanocomposites for supercapacitor applications. Journal of nanostructure in. Chemistry 7:75–83. https://doi.org/10.1007/s40097-017-0217-6.

    Article  CAS  Google Scholar 

  72. Sinha S, Bhadra S, Khastgir D (2008) Effect of dopant type on the properties of polyaniline. J Appl Polym Sci 112:3135–3140. https://doi.org/10.1002/app.29708

    Article  CAS  Google Scholar 

  73. Ghosh P, Siddhanta SK, Haque SR, Chakrabarti A (2001) Stable polyaniline dispersions prepared in nonaqueous medium synthesis and characterization. Synth Met 123:83–89. https://doi.org/10.1016/S0379-6779(00)00579-8

    Article  CAS  Google Scholar 

  74. Ismail HK, (2017) Noval battery chemistries using electrically conducting polymers synthesised from deep eutectic solvents and aqueous solurions. PhD Thesis, University of Leicester http://hdl.handle.net/2381/39875.2017.7.06. Accessed 20/01/2019

  75. Kim J, Ju H, Inamdar AI, Jo Y, Han J, Kim H, Im H (2014) Synthesis and enhanced electrochemical supercapacitor properties of ag-MnO2-polyaniline nanocomposite electrodes. Energy 70:473–477. https://doi.org/10.1016/j.energy.2014.04.018

    Article  CAS  Google Scholar 

  76. Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195:3041–3045. https://doi.org/10.1016/j.jpowsour.2009.11.028

    Article  CAS  Google Scholar 

  77. Wang G, Tang Q, Bao H, Li X, Wang G (2013) Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance. J Power Sources 241:231–238. https://doi.org/10.1016/j.jpowsour.2013.04.122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank each of the following universities: Koya, Kerbala and Barsrah, respectively, for providing the required materials and instruments for this work. The authors gratefully acknowledge the support received from Prof. Peter Food (Kingston University, London) for conductivity measurements. Many thanks go to the PhD students and Vinay Patel from Leicester University for the SEM and Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani K. Ismail.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, H.K., Alesary, H.F. & Mohammed, M.Q. Synthesis and characterisation of polyaniline and/or MoO2/graphite composites from deep eutectic solvents via chemical polymerisation. J Polym Res 26, 65 (2019). https://doi.org/10.1007/s10965-019-1732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1732-6

Keywords

Navigation