Skip to main content
Log in

Studies on electrical conductivity of PVA/graphite oxide nanocomposites: a free volume approach

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(vinyl alcohol) and graphite oxide (PVA/GO) polymer nanocomposites of different GO wt% have been prepared. The decreased positron lifetime parameter viz., o-Ps lifetime (τ3) at the lower concentration of GO indicates the improved interfacial interaction between the surface of GO nanoparticles and side chain of PVA polymer matrix. This is evident from Fourier transform infrared spectroscopy (FTIR) studies. The increased o-Ps lifetime (τ3) after 0.4 wt% of GO suggests the increased interfacial area at the interface of PVA and GO nanoclusters. The increased electrical conductivity at the lower concentration of GO suggests the conductivity chain formation through the nanoparticle aggregation. The decreased conductivity at higher concentration of GO indicates the reduced conducting pathways for the mobility of charge carriers. Scanning electron microscopy (SEM) studies show the random distribution of GO nanoparticles and the formation of nanoclusters in PVA matrix at the lower and higher concentrations of GO nanoparticles respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Madani M, Alshangiti DM (2013) J Appl Sci Res 9(10):6521–6528

    CAS  Google Scholar 

  2. Cury Camargo PH, Satyanarayana KG, Wypych F (2009) Mater Res 12:1–39

    Article  Google Scholar 

  3. Zheng Y, Zheng Y, Ning R (2003) Mater Lett 57(19):2940–2944

    Article  CAS  Google Scholar 

  4. Gao S, Yan XL, Zhong J, Xue GB, Wang B (2013) J Appl Phys Lett 102:173903

    Article  Google Scholar 

  5. Song JG (1996) Mater Rev 4:57–59

    Google Scholar 

  6. Aly EH (2011) Am J Appl Sci 8(2):147–155

    Article  CAS  Google Scholar 

  7. Kondawar SB, Bompilwar SD, Khati VS, Thakre SR, Tabhane VA, Burghate DK (2010) Arch Appl Sci Res 2(1):247–253

    CAS  Google Scholar 

  8. Hildebrandt K, Mitschang P (2011) Proc of 18th Int Conf Compos Mater Jeju Island, Korea, Aug 21–26

  9. Shanmukaraj, Wang GX, Murugan R, Liu HK (2008) J Phys Chem Solids 69:243–248

    Article  CAS  Google Scholar 

  10. Munirathnamma LM, Ravikumar HB (2016) J Appl Polym Sci 133:43647

    Article  Google Scholar 

  11. Ravikumar HB, Ranganathaiah C, Kumaraswamy GN (2005) Polym 46:2372–2380

    Article  CAS  Google Scholar 

  12. Kierkegaard P, Pedersen NJ, Eldrup M (1989) Riso Nat Lab reports: Denmark. RISO- M-274

  13. Nakanishi H, Wang SJ, Jean YC (1988) In: Sharma (ed) Positron annihilation in fluids. Singapore, World Scientific

    Google Scholar 

  14. Tao SJ (1972) J Chem Phys 56:5499–5510

    Article  CAS  Google Scholar 

  15. Eldrup M, Lightbody D, Sherwood JN (1981) Chem Phys 63:51–58

    Article  CAS  Google Scholar 

  16. Paranhos CM, Soares BG, Machado JC, Windmoller D, Pessan LA (2007) Eur Polym J 43:4882–4890

    Article  CAS  Google Scholar 

  17. Dlubek G, Alam MA, Stolp M, Radusch HJ (1999) J Polym Sci B Polym Phys 37:1749

    Article  CAS  Google Scholar 

  18. Machado JC, Silva GG, Soares LS (2000) J Polym Sci B Polym Phys 38:1045

    Article  CAS  Google Scholar 

  19. Winberg P, DeSitter K, Dotremont C, Mullens S, Vankelecom I, Maurer F (2005) Macromolecules 38:3776–3782

  20. Misheva M, Djourelow N, Dimitrova A, Zamfirova G (2000) Macromol Chem Phys 201:2348

    Article  CAS  Google Scholar 

  21. Dlubek G, Bondarenko V, Pionteck J, Kilburn D, Pompe G, Taesler C (2003) Radiat Phys Chem 68:369

    Article  CAS  Google Scholar 

  22. Porto AO, Silva GG, Magalhaes WF (1999) J Polym Sci B Polym Phys 37:219

    Article  CAS  Google Scholar 

  23. Zhang M, Fang PF, Zhang SP, Wang B, Wang S (2003) Radiat Phys Chem 68:565

    Article  CAS  Google Scholar 

  24. Lin D, Wang SJ (1992) J Phys Condens Matter 4:3331

    Article  Google Scholar 

  25. Awad S, Chen H (2011) Guodong. Macromolecules 44:29–38

    Article  CAS  Google Scholar 

  26. Bindu P, Thomas S (2013) J Phys Chem B 117:12632

    Article  CAS  Google Scholar 

  27. Bhajantri RF, Ravindrachary V, Harisha A, Ranganathaiah C, Kumaraswamy GN (2007) Appl Phys A Mater Sci Process 87:797

    Article  CAS  Google Scholar 

  28. Jean YC, Mallon PE, Schrader DM (2003) Principles and applications of positron & positronium chemistry. World Scientific, Singapore

  29. Wang YQ, Wu YP, Zhang HF, Zhang LQ, Wang B, Wang ZF (2004) Macromol Rapid Commun 25:1973–1978

    Article  CAS  Google Scholar 

  30. Mostafa N, Mohsen M, Rashad S, Aiob A, Salem EL (2004) J Appl Polym Sci 96:638–644

    Article  Google Scholar 

  31. Sickierski M, Wakiewiez A, Celemencka A, Wyeislik H (2006) J New Mat Electrochem Systems 9:367–374

    Google Scholar 

  32. Sabzi M, Jiang L, Liu F, Ghasemi I, Atai M (2013) J Mater Chem A 1(28):8253–8261

    Article  CAS  Google Scholar 

  33. Kim A, Abdala AA, Macosko CW (2010) Macromolecules 43(16):6515–6530

    Article  CAS  Google Scholar 

  34. Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) J Mater Chem 22(21):10464–10468

    Article  CAS  Google Scholar 

  35. Potts JR, Shankar O, Du L, Ruoff RS (2012) Macromolecules 45(15):6045–6055

    Article  CAS  Google Scholar 

  36. Lam CK, Cheung HY, Lau KT, Zhou LM, Ho MW, Hui D (2005) Compos Part B: Eng 36:263–269

    Article  Google Scholar 

  37. Abdelaziz M, Abdelrazek EM (2007) Physica B 390:1–9

    Article  CAS  Google Scholar 

  38. Zamri MFMA, Zein SHS, Abdullah AZ, Basir NI (2011) Inter J Eng & Tech 11:110506–119494

    Google Scholar 

  39. Zhang C, Daniel MD, Li-Min L, Ilhan AA, Roberto C, Annabella SJ (2015) Phys Chem C 119:18167–18176

    Article  CAS  Google Scholar 

  40. Daniel RD, Sungjin P, Christopher WB, Rodney SR (2010) Chem Soc Rev 39:228–240

    Article  Google Scholar 

  41. Abd-El Salam MH, El-Gamal S, Abd El-Maqsoud DM, Mohsen M (2013) Polym Compos 34:2105–2115

    Article  CAS  Google Scholar 

  42. Miyamoto T, Shibayama K (1973) J Appl Phys 44:5372

    Article  CAS  Google Scholar 

  43. Agarwal RC, Gupta RK (1999) J Mater Sci 34:1131

    Article  Google Scholar 

  44. Mikkrajuddin A, Shi FG, Okuyama K (2000) J Electrochem Soc 147:3157

    Article  Google Scholar 

  45. Knauth P (2000) J Electroceram 5:111

    Article  CAS  Google Scholar 

  46. Canzhong H, Xiaodong S, Zheng P, Jieping Z, Shuangquan L, Wei G, Jianhe L, Lingxue K (2015) Phys Chem Chem Phys 17:12175

    Article  Google Scholar 

  47. Nicholas P Cheremisinoff (1997) Handbook of engineering polymeric materials (Ed) Marcel Dekker, Inc., New York, p 854

  48. Polu AR, Kumar R (2013) Adv. Mat Lett 4(7):543–547

    Article  Google Scholar 

  49. Wang YY, Yang YH (1992) Mater Sci Forums 105-110:1795–1803

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (S. N.) is thankful to UGC, India, for providing the Junior Research Fellowship (JRF) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Ravikumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ningaraju, S., Ravikumar, H.B. Studies on electrical conductivity of PVA/graphite oxide nanocomposites: a free volume approach. J Polym Res 24, 11 (2017). https://doi.org/10.1007/s10965-016-1176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1176-1

Keywords

Navigation