Skip to main content

Advertisement

Log in

Excellent corrosion protection performance of epoxy composite coatings filled with silane functionalized silicon nitride

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Silicon nitride was firstly used as anticorrosive pigment in organic coatings. An effective strategy by combining inorganic fillers and organosilanes was used to enhance the dispersibility of silicon nitride in epoxy resin. The formed nanocomposites were applied to protect Q235 carbon steel from corrosion. The anticorrosive performance of modified silicon nitride with silane (KH-570) was investigated by electrochemical impedance spectroscopy (EIS), water absorption and pull-off adhesion methods. With the increase of immersion time, the corrosion resistance as well as adhesion strength of epoxy resin coating and unmodified silicon nitride coating decreased significantly. However, for the modified silicon nitride coating, the corrosion resistance and adhesion strength still maintained 5.7×1010 Ω cm2 and 7.6 MPa after 2400-h and 1200-h immersion, respectively. The excellent corrosion resistance performance could be attributed to the chemical interactions between KH-570 functional groups and silicon nitride powders, which mainly came from the easy formation of Si-O-Si bonds. Furthermore, the modified silicon nitride coating formed a strong barrier to corrosive electrolyte due to the hydrophobic of modified silicon nitride powder and increased bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kumar SA, Denchev Z (2009) Development and characterization of phosphorus-containing siliconized epoxy resin coatings. Prog Org Coat 66:1–7

    Article  CAS  Google Scholar 

  2. Kang Y, Chen X, Song S, Yu L, Zhang P (2012) Friction and wear behavior of nanosilica-filled epoxy resin composite coatings. Appl Surf Sci 258:6384–6390

    Article  CAS  Google Scholar 

  3. Asiri AM, Hussein MA, Abu-Zied BM, Hermas A-EA (2013) Effect of NiLaxFe2−xO4 nanoparticles on the thermal and coating properties of epoxy resin composites. Compos Part B 51:11–18

    Article  CAS  Google Scholar 

  4. Brostow W, Dutta M, Rusek P (2010) Modified epoxy coatings on mild steel: tribology and surface energy. Eur Polym J 46:2181–2189

    Article  CAS  Google Scholar 

  5. Legghe E, Aragon E, Bélec L, Margaillan A, Melot D (2009) Correlation between water diffusion and adhesion loss: study of an epoxy primer on steel. Prog Org Coat 66:276–280

    Article  CAS  Google Scholar 

  6. Popineau S, Rondeau-Mouro C, Sulpice-Gaillet C, Shanahan MER (2005) Free/bound water absorption in an epoxy adhesive. Polymer 46:10733–10740

    Article  CAS  Google Scholar 

  7. Sørensen PA, Kiil S, Dam-Johansen K, Weinell CE (2009) Anticorrosive coatings: a review. J Coat Technol Res 6:135–176

    Article  CAS  Google Scholar 

  8. Le Pen C, Lacabanne C, Pébère N (2000) Structure of waterborne coatings by electrochemical impedance spectroscopy and a thermostimulated current method: influence of fillers. Prog Org Coat 39:167–175

    Article  Google Scholar 

  9. Veleva L, Chin J, del Amo B (1999) Corrosion electrochemical behavior of epoxy anticorrosive paints based on zinc molybdenum phosphate and zinc oxide. Prog Org Coat 36:211–216

    Article  CAS  Google Scholar 

  10. Vilche JR, Bucharsky EC, Giúdice CA (2002) Application of EIS and SEM to evaluate the influence of pigment shape and content in ZRP formulations on the corrosion prevention of naval steel. Corros Sci 44:1287–1309

    Article  CAS  Google Scholar 

  11. Bierwagen G, Battocchi D, Simões A, Stamness A, Tallman D (2007) The use of multiple electrochemical techniques to characterize mg-rich primers for Al alloys. Prog Org Coat 59:172–178

    Article  CAS  Google Scholar 

  12. Liu X, Shao Y, Zhang Y, Meng G, Zhang T, Wang F (2015) Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating – I. High-temperature ball milling treatment. Corros Sci 90:451–462

    Article  CAS  Google Scholar 

  13. Liu X, Shao Y, Zhang Y, Meng G, Zhang T, Wang F (2015) Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating – II. Effect of grinding temperature. Corros Sci 90:463–471

    Article  CAS  Google Scholar 

  14. Chen S, Cai Y, Zhuang C, Yu M, Song X, Zhang Y (2015) Electrochemical behavior and corrosion protection performance of bis[triethoxysilylpropyl] tetrasulfide silane films modified with TiO2 sol on 304 stainless steel. Appl Surf Sci 331:315–326

    Article  CAS  Google Scholar 

  15. Balaskas AC, Kartsonakis IA, Tziveleka LA, Kordas GC (2012) Improvement of anti-corrosive properties of epoxy-coated AA 2024-T3 with TiO2 nanocontainers loaded with 8-hydroxyquinoline. Prog Org Coat 74:418–426

    Article  CAS  Google Scholar 

  16. Al-Turaif HA (2010) Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Prog Org Coat 69:241–246

    Article  CAS  Google Scholar 

  17. Gupta G, Birbilis N, Cook AB, Khanna AS (2013) Polyaniline-lignosulfonate/epoxy coating for corrosion protection of AA2024-T3. Corros Sci 67:256–267

    Article  CAS  Google Scholar 

  18. Pereira da Silva JE, Córdoba de Torresi SI, Torresi RM (2005) Polyaniline acrylic coatings for corrosion inhibition: the role played by counter-ions. Corros Sci 47:811–822

    Article  CAS  Google Scholar 

  19. Zhang Y, Shao Y, Zhang T, Meng G, Wang F (2011) The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of AZ91D magnesium alloy. Corros Sci 53:3747–3755

    Article  CAS  Google Scholar 

  20. Vakili H, Ramezanzadeh B, Amini R (2015) The corrosion performance and adhesion properties of the epoxy coating applied on the steel substrates treated by cerium-based conversion coatings. Corros Sci 94:466–475

    Article  CAS  Google Scholar 

  21. Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, Zhang X, Wei S, Guo Z (2015) Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J Mater Chem A 3:14929–14941

    Article  CAS  Google Scholar 

  22. Ji W-G, Hu J-M, Zhang J-Q, Cao C-N (2006) Reducing the water absorption in epoxy coatings by silane monomer incorporation. Corros Sci 48:3731–3739

    Article  CAS  Google Scholar 

  23. Wu L-K, Zhang J-T, Hu J-M, Zhang J-Q (2012) Improved corrosion performance of electrophoretic coatings by silane addition. Corros Sci 56:58–66

    Article  CAS  Google Scholar 

  24. Ji W-G, Hu J-M, Liu L, Zhang J-Q, Cao C-N (2006) Water uptake of epoxy coatings modified with γ-APS silane monomer. Prog Org Coat 57:439–443

    Article  CAS  Google Scholar 

  25. Jiang M-Y, Wu L-K, Hu J-M, Zhang J-Q (2015) Silane-incorporated epoxy coatings on aluminum alloy (AA2024). Part 1: improved corrosion performance. Corros Sci 92:118–126

    Article  CAS  Google Scholar 

  26. Jiang M-Y, Wu L-K, Hu J-M, Zhang J-Q (2015) Silane-incorporated epoxy coatings on aluminum alloy (AA2024). Part 2: mechanistic investigations. Corros Sci 92:127–135

    Article  CAS  Google Scholar 

  27. Lee MR, Russell SS, Arden JW, Pillinger CT (1995) Nierite (Si3N4), a new mineral from ordinary and enstatite chondrites. Meteoritics 30:387–398

    Article  CAS  Google Scholar 

  28. Lukianova O (2015) Mechanical and elastic properties of new silicon nitride ceramics produced by cold isostatic pressing and free sintering. Ceram Int 41 (13716–13720

    Article  CAS  Google Scholar 

  29. Seiner H, Ramirez C, Koller M, Sedlák P, Landa M, Miranzo P, Belmonte M, Osendi MI (2015) Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers. Mater Des 87:675–680

    Article  CAS  Google Scholar 

  30. Riley FL (2004) Silicon nitride and related materials. J Am Ceram Soc 83:245–265

    Article  Google Scholar 

  31. Yu J, Wang H, Zhang J (2009) Neural network modeling and analysis of gel casting preparation of porous Si3N4 ceramics. Ceram Int 35:2943–2950

    Article  CAS  Google Scholar 

  32. Lyckfeldt O, Ferreira JMF (1998) Processing of porous ceramics by ‘starch consolidation’. J Eur Ceram Soc 18:131–140

    Article  CAS  Google Scholar 

  33. Blugan G, Wittig D, Kuebler J (2009) Oxidation and corrosion of silicon nitride ceramics with different sintering additives at 1200 and 1500°C in air, water vapour, SO2 and HCl environments – a comparative study. Corros Sci 51:547–555

    Article  CAS  Google Scholar 

  34. Klemm H (2010) Silicon nitride for high-temperature applications. J Am Ceram Soc 93:1501–1522

    Article  CAS  Google Scholar 

  35. Jordache MK, Du H (2015) High-temperature alkali corrosion of Kyocera SN282 silicon nitride. Corros Sci 91:68–74

    Article  CAS  Google Scholar 

  36. Monteverde F, Mingazzini C, Giorgi M, Bellosi A (2001) Corrosion of silicon nitride in sulphuric acid aqueous solution. Corros Sci 43:1851–1863

    Article  CAS  Google Scholar 

  37. Dierksen D, Kühner P, Kappler A, Nickel KG (2011) Microbial corrosion of silicon nitride ceramics by sulphuric acid producing bacteria Acidithiobacillus ferrooxidans. J Eur Ceram Soc 31:1177–1185

    Article  CAS  Google Scholar 

  38. Olofsson J, Pettersson M, Teuscher N, Heilmann A, Larsson K, Grandfield K, Persson C, Jacobson S, Engqvist H (2012) Fabrication and evaluation of SixNy coatings for total joint replacements. J Mater Sci Mater Med 23:1879–1889

    Article  CAS  PubMed  Google Scholar 

  39. Pettersson M, Berlind T, Schmidt S, Jacobson S, Hultman L, Persson C, Engqvist H (2013) Structure and composition of silicon nitride and silicon carbon nitride coatings for joint replacements. Surf Coat Technol 235:827–834

    Article  CAS  Google Scholar 

  40. Pettersson M, Tkachenko S, Schmidt S, Berlind T, Jacobson S, Hultman L, Engqvist H, Persson C (2013) Mechanical and tribological behavior of silicon nitride and silicon carbon nitride coatings for total joint replacements. J Mech Behav Biomed Mater 25:41–47

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Qu L, Wang F (2003) The electrochemical corrosion behavior of TiN and (Ti,Al)N coatings in acid and salt solution. Corros Sci 45:1367–1381

    Article  CAS  Google Scholar 

  42. Liu Y, Wang J, Liu L, Li Y, Wang F (2013) Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure. Corros Sci 74:59–70

    Article  CAS  Google Scholar 

  43. Tian W, Liu L, Meng F, Liu Y, Li Y, Wang F (2014) The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure. Corros Sci 86:81–92

    Article  CAS  Google Scholar 

  44. Ramezanzadeh B, Ahmadi A, Mahdavian M (2016) Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets. Corros Sci 109:182–205

    Article  CAS  Google Scholar 

  45. Lu X, Zuo Y, Zhao X, Tang Y (2012) The improved performance of a mg-rich epoxy coating on AZ91D magnesium alloy by silane pretreatment. Corros Sci 60:165–172

    Article  CAS  Google Scholar 

  46. Bahlakeh G, Ramezanzadeh B, Ramezanzadeh M (2017) Cerium oxide nanoparticles influences on the binding and corrosion protection characteristics of a melamine-cured polyester resin on mild steel: an experimental, density functional theory and molecular dynamics simulation study. Corros Sci 118:69–83

    Article  CAS  Google Scholar 

  47. Ku S-L, Lee C-C (2010) Optical and structural properties of silicon nitride thin films prepared by ion-assisted deposition. Opt Mater 32:956–960

    Article  CAS  Google Scholar 

  48. Brunet M, Aureau D, Chantraine P, Guillemot F, Etcheberry A, Gouget-Laemmel AC, Ozanam F (2017) Etching and chemical control of the silicon nitride surface. ACS Appl Mater Interfaces 9:3075–3084

    Article  CAS  PubMed  Google Scholar 

  49. Wang C, Mao H, Wang C, Fu S (2011) Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with Silane coupling agent. Ind Eng Chem Res 50:11930–11934

    Article  CAS  Google Scholar 

  50. Ni W, Wu S, Ren Q (2012) Preparation and characterization of Silanized TiO2Nanoparticles and their application in toner. Ind Eng Chem Res 51:13157–13163

    Article  CAS  Google Scholar 

  51. Tai Y, Qian J, Zhang Y, Huang J (2008) Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH). Chem Eng J 141:354–361

    Article  CAS  Google Scholar 

  52. Xiao X, Xu R (2011) Preparation and surface properties of core-shell polyacrylate latex containing fluorine and silicon in the shell. J Appl Polym Sci 119:1576–1585

    Article  CAS  Google Scholar 

  53. Chen L, Jin H, Xu Z, Shan M, Tian X, Yang C, Wang Z, Cheng B (2014) A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface. Mater Chem Phys 145:186–196

    Article  CAS  Google Scholar 

  54. Pan M, Gan X, Mei C, Liang Y (2017) Structural analysis and transformation of biosilica during lignocellulose fractionation of rice straw. J Mol Struct 1127:575–582

    Article  CAS  Google Scholar 

  55. Hu X, Su E, Zhu B, Jia J, Yao P, Bai Y (2014) Preparation of silanized graphene/poly(methyl methacrylate) nanocomposites in situ copolymerization and its mechanical properties. Compos Sci Technol 97:6–11

    Article  CAS  Google Scholar 

  56. Chen Y, Wang XH, Li J, Lu JL, Wang FS (2007) Long-term anticorrosion behaviour of polyaniline on mild steel. Corros Sci 49:3052–3063

    Article  CAS  Google Scholar 

  57. Shao Y, Huang H, Zhang T, Meng G, Wang F (2009) Corrosion protection of mg–5Li alloy with epoxy coatings containing polyaniline. Corros Sci 51:2906–2915

    Article  CAS  Google Scholar 

  58. Hao Y, Liu F, Han E-H, Anjum S, Xu G (2013) The mechanism of inhibition by zinc phosphate in an epoxy coating. Corros Sci 69:77–86

    Article  CAS  Google Scholar 

  59. Pourhashem S, Vaezi MR, Rashidi A, Bagherzadeh MR (2017) Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corros Sci 115:78–92

    Article  CAS  Google Scholar 

  60. Zhang SY, Li SJ, Luo XW, Zhou WF (2000) Mechanism of the significant improvement in corrosion protection by lowering water sorption of the coating. Corros Sci 42:2037–2041

    Article  CAS  Google Scholar 

  61. Zhang SY, Ding YF, Li SJ, Luo XW, Zhou WF (2002) Effect of polymeric structure on the corrosion protection of epoxy coatings. Corros Sci 44:861–869

    Article  CAS  Google Scholar 

  62. Chen Y, Lin A, Gan F (2006) Improvement of polyacrylate coating by filling modified nano-TiO2. Appl Surf Sci 252:8635–8640

    Article  CAS  Google Scholar 

  63. Becker O, Varley RJ, Simon GP (2004) Thermal stability and water uptake of high performance epoxy layered silicate nanocomposites. Eur Polym J 40:187–195

    Article  CAS  Google Scholar 

  64. Araujo WS, Margarit ICP, Ferreira M, Mattos OR, Neto PL (2001) Undoped polyaniline anticorrosive properties. Electrochim Acta 46:1307–1312

    Article  CAS  Google Scholar 

  65. Ramezanzadeh B, Niroumandrad S, Ahmadi A, Mahdavian M, Moghadam MHM (2016) Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros Sci 103:283–304

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (51572249), the Natural Science Foundation for Shandong Province (ZR2014EMM021), the National High Technology Research and Development Programof China (2013A2041106), and the Fundamental Research Funds for the Central Universities (841562011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shougang Chen or Zhanhu Guo.

Electronic supplementary material

ESM 1

(DOC 2988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, M., Zhang, J. et al. Excellent corrosion protection performance of epoxy composite coatings filled with silane functionalized silicon nitride. J Polym Res 25, 130 (2018). https://doi.org/10.1007/s10965-018-1518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1518-2

Keywords

Navigation