Skip to main content
Log in

Effect of Al2O3 Nanofiller on ion conductivity, transmittance, and glass transition temperature of PEI:LiTFSI:PC:EC polymer electrolytes

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the present study, ion conductivity, optical properties, and glass transition temperatures are characterized for polymer electrolytes composed of poly(ethyleneimine) (PEI), lithium bis(trifluoromethane)sulfonylimide (LiTFSI) salt, propylene carbonate (PC), and ethylene carbonate (EC). It was doped with nanoceramic particles in different ratio (0–15 wt.%) to see the effect of ceramic particles. The salt concentration was fixed as 1.04 mol.kg−1. Although valuable improvement in ion conductivity could not be achieved due to nano-Al2O3 fillers, ion conductivity results are placed between 10−2 and 10−4 S/cm. Differential scanning calorimetry (DSC) measurements and optical measurements of all electrolytes were performed between −80 and 140 °C, in the wavelength range between 400 and 700 nm for sample with 80 μm thickness, respectively. The results showed that transmittance of electrolytes decreased monotonically for increasing Al2O3 contents. In particular, its transmittance value at 550 nm where human sight is at its greatest sensitivity went from 100% without nanoparticles to 50% for 15 wt% of Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cogan SF, Rauh RD, Westwood JD, Plotkin DI, Jones RB (1989) SPIE 1149:2

    CAS  Google Scholar 

  2. Rose TL, D’Antonio S, Jillson MH, Kon AB, Suresh R, Wang F (1997) Synth Methods 85:1439

    Article  CAS  Google Scholar 

  3. Desai SS (2012) Fabrication of dual layer conducting polymer electrochromic devices using novel electrolytes. University of Wollongong, Wollongong

    Google Scholar 

  4. Zhang R (2013) Advanced gel polymer electrolyte for lithium-ion polymer batteries. Iowa State University, Iowa

    Book  Google Scholar 

  5. Gray FM (1991) Solid polymer electrolytes: fundamentals and technological applications. VCH Publishers, New York

    Google Scholar 

  6. Lampert CM (1984) Solar Energy Materials 11:1–27

    Article  CAS  Google Scholar 

  7. Best AS, Adebahr J, Jacobsson P, MacFarlane DR, Forsyth M (2001) Macromolecules 34:4549–4555

    Article  CAS  Google Scholar 

  8. Adebahr J, Byrne N, Forsyth M, MacFarlane DR, Jacobsson P (2003) Electrochimicia Acta 48:2099–2103

    Article  CAS  Google Scholar 

  9. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456–458

    Article  CAS  Google Scholar 

  10. Zhang H, Maitra P, Wunder SL (2008) Solid State Ionics 178:1975–1983

    Article  CAS  Google Scholar 

  11. Wieczorek W, Florjanczyk Z, Stevens JR (1995) Electrochim Acta 40:2251–2258

    Article  CAS  Google Scholar 

  12. Capiglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A (1999) Solid State Ionics 118:73–79

    Article  CAS  Google Scholar 

  13. Fan L, Nan C-W, Zhao S (2003) Solid State Ionics 164:81–86

    Article  CAS  Google Scholar 

  14. Deb SK (1969) Appl Opt Suppl 3:192

    Article  Google Scholar 

  15. Krawiec W, Scanlon LG, Fellner JP, Vaia RA, Vasudevan S, Giannelis EO (1995) J Power Sources 54:310

    Article  CAS  Google Scholar 

  16. Kumar B, Scanlon LG, Spry RJ (2001) J Power Sources 96:337

    Article  CAS  Google Scholar 

  17. Persi L, Croce F, Scrosati B, Plichta E, Hendrickson MA (2002) J Electrochem Soc 149:212–216

    Article  Google Scholar 

  18. Nookala M, Kumar B, Rodrigues S (2002) J Power Sources 111:165–172

    Article  CAS  Google Scholar 

  19. ElBellihi AA, Bayoumy WA, Masoud EM, Mousa MA (2012) Bull Kor Chem Soc 33:2949–2954

    Article  CAS  Google Scholar 

  20. Dey A, Karan S, De SK (2013) Indian Journal of Pure & Applied Physics 51:281–288

    CAS  Google Scholar 

  21. Capuano F, Croce F, Scrosati B (1991) J Electrochem Soc 138:1918–1922

    Article  CAS  Google Scholar 

  22. Syzdek J, Borkowska R, Perzyna K, Tarascon JM, Wieczorek W (2007) J Power Sources 173:712–720

    Article  CAS  Google Scholar 

  23. Yap YL, You AH, Teo LL, Hanapei H (2013) Int J Electrochem Sci 8:2154–2163

    CAS  Google Scholar 

  24. Zhang J, Huang X, Wei H, Fu J, Huang Y, Tang X (2010) J Appl Electrochem 40:1475–1481

    Article  CAS  Google Scholar 

  25. Yang R, Zhang S, Zhang L, Liu W (2013) Int J Electrochem Sci 8:10163–10169

    CAS  Google Scholar 

  26. Pehlivan IB, Granqvist CG, Marsal R, Georen P, Niklasson GA (2012) Sol Energy Mater Sol Cells 98:465–471

    Article  CAS  Google Scholar 

  27. Kim J, Park SJ, Kim S (2012) J Nanosci Nanotechnol 12:685–689

    Article  CAS  Google Scholar 

  28. Pehlivan IB (2013) Functionalization of polymer electrolytes for electrochromic windows. Uppsala University, Uppsala

    Google Scholar 

  29. Chiang CK, Davis GT, Harding CA, Takahashi T (1986) Solid State Ionics 18-19:300–305

    Article  CAS  Google Scholar 

  30. Paul J-L, Jegat C, Lasségues J-C (1992) Electrochim Acta 37:1623–l625

    Article  CAS  Google Scholar 

  31. Tanaka R, Sakurai M, Sekiguchi H, Inoue M (2003) Electrochim Acta 48:2311–2316

    Article  CAS  Google Scholar 

  32. Akhtar M, Paiste RM, Weakliem HA (1988) J Electrochem Soc 135:1597–1598

    Article  CAS  Google Scholar 

  33. Dias FB, Plomp L, Veldhuis JBJ (2000) J Power Sources 88:169–191

    Article  CAS  Google Scholar 

  34. Bruce PG, Vincent CA (1993) Journal of Chemical Society Faraday Trans 89:3187–3203

    Article  CAS  Google Scholar 

  35. Sequeira CAC, Santos DMF (2010) In: Sequeira C, Santos D (eds) Introduction to polymer electrolyte materials. Cornwall, Woodhead Publishing Limited

    Chapter  Google Scholar 

  36. York SS, Buckner M, Frech R (2004) Macromolecules 37:994–999

    Article  CAS  Google Scholar 

  37. Price PM, Clark JH, Macquarrie DJ (2000) J Chem Soc Dalton Trans 2:101–110

    Article  Google Scholar 

  38. Rozenberg BA, Tenne R (2008) Prog Polym Sci 33:40–112

    Article  CAS  Google Scholar 

  39. Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander B-E (2002) Electrochim Acta 47:3257–3268

    Article  CAS  Google Scholar 

  40. Munichandraiah N, Scanlon LG, Marsh RA, Kumar B, Sircar AK (1995) J Appl Electrochem 25:857–863

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Scientific Research Project (BAP) of Anadolu University (Project No: 1606F553) for its generous financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semra Kurama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakarya, O., Kurama, S. & Gunkaya, G. Effect of Al2O3 Nanofiller on ion conductivity, transmittance, and glass transition temperature of PEI:LiTFSI:PC:EC polymer electrolytes. J Polym Res 24, 14 (2017). https://doi.org/10.1007/s10965-016-1172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1172-5

Keywords

Navigation