Skip to main content
Log in

Novel amphiphilic temperature responsive graft copolymers PCL-g-P(MEO2MA-co-OEGMA) via a combination of ROP and ATRP: synthesis, characterization, and sol-gel transition

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of well-defined novel amphiphilic temperature-responsive graft copolymers containing PCL analogues P(αClεCL-co-εCL) as the hydrophobic backbone, and the hydrophilic side-chain PEG analogues P(MEO2MA-co-OEGMA), designated as P(αClεCL-co-εCL)-g-P(MEO2MA-co-OEGMA) have been prepared via a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The composition and structure of these copolymers were characterized by 1H NMR and GPC analyses. The self-assembly behaviors of these amphiphilic graft copolymers were investigated by UV transmittance, a fluorescence probe method, dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. The results showed that the graft copolymers exhibited the good solubility in water, and was given the low critical temperature (LCST) at 35(±1) °C, which closed to human physiological temperature. The critical micelle concentrations (CMC) of P(αClεCL-co-εCL)-g-P(MEO2MA-co-OEGMA) in aqueous solution were investigated to be 2.0 × 10−3, 9.1 × 10−4 and 1.5 × 10−3 mg·mL−1, respectively. The copolymer could self-assemble into sphere-like aggregates in aqueous solution with diverse sizes when changing the environmental temperature. The vial inversion test demonstrated that the graft copolymers could trigger the sol-gel transition which also depended on the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC (2015) J Am Chem Soc 137:2140–2154

    Article  CAS  Google Scholar 

  2. Meng FH, Zhong ZY, Jan FJ (2009) Biomacromolecules 10:197–209

    Article  CAS  Google Scholar 

  3. Guo BC, Chen YW, Lei YD, Zhang LQ, Zhou WY, Rabie ABM, Zhao JQ (2011) Biomacromolecules 12:1312–1321

    Article  CAS  Google Scholar 

  4. Matsusaki M, Akashi M (2005) Biomacromolecules 6:3351–3356

    Article  CAS  Google Scholar 

  5. Galperin A, Long TJ, Ratner BD (2010) Biomacromolecules 11:2583–2592

    Article  CAS  Google Scholar 

  6. Patton JN, Palmer AF (2005) Biomacromolecules 6:2204–2212

    Article  CAS  Google Scholar 

  7. Zhang Z, Chen XF, Chen L, Yu SJ, Cao Y, He CL, Chen XS (2013) Appl Mater Interfaces 5:10760–10766

    Article  CAS  Google Scholar 

  8. Hamner KL, Alexander CM, Coopersmith K, Reishofer D, Provenza C, Maye MM (2013) ACS Nano 7:7011–7020

    Article  CAS  Google Scholar 

  9. Hadjichristidisa N, Iatroua H, Pitsikalisa M, Mays J (2006) Prog Polym Sci 31:1068–1132

    Article  Google Scholar 

  10. Trubetskoy VS (1999) Adv Drug Deliv Rev 37:81–88

    Article  CAS  Google Scholar 

  11. Zhang MF, Drechsler M, Müller AHE (2004) Chem Mater 16:537–543

    Article  CAS  Google Scholar 

  12. Djalali R, Li SY, Schmidt M (2002) Macromolecules 35:4282–4288

    Article  CAS  Google Scholar 

  13. Liang XY, Liu YJ, Huang J, Wei LH, Wang GW (2015) Polym Chem 6:466–475

    Article  CAS  Google Scholar 

  14. Yu L, Ding JD (2008) Chem Soc Rev 37:1473–1481

    Article  CAS  Google Scholar 

  15. Jeong B, Lee KM, Gutowska A, An YH (2002) Biomacromolecules 3:865–868

    Article  CAS  Google Scholar 

  16. Booth C, Attwood D (2000) Macromol Rapid Commun 21:501–527

    Article  CAS  Google Scholar 

  17. Hu YF, Darcos V, Monge S, Li SM, Zhou Y, Su F (2014) Int J Pharm 476:31–40

    Article  CAS  Google Scholar 

  18. Ke XX, Wang L, Xu JT, Du BY, Tu YF, Fan ZQ (2014) Soft Matter 10:5201–5211

    Article  CAS  Google Scholar 

  19. Zhang XW, Monge S, In M, Giani O, Robin JJ (2013) Soft Matter 9:1301–1309

    Article  CAS  Google Scholar 

  20. Steinschulte AA, Schulte B, Rütten S, Eckert T, Okuda J, Möller M, Schneider S, Borisov OV, Plamper FA (2014) Phys Chem Chem Phys 16:4917–4932

    Article  CAS  Google Scholar 

  21. Bathfield M, Warnant J, Gérardin C, Lacroix-Desmazes P (2015) Polym Chem 6:1339–1349

    Article  CAS  Google Scholar 

  22. Niskanen J, Wu C, Ostrowski M, Fuller GG, Hietala S, Tenhu H (2013) Macromolecules 46:2331–2340

    Article  CAS  Google Scholar 

  23. Gawlitza K, Radulescu A, Klitzing R, Wellert S (2014) Polymer 55:6717–6724

    Article  CAS  Google Scholar 

  24. Hu YF, Darcos V, Monge S, Li SM (2015) Int J Pharm 491:152–161

    Article  CAS  Google Scholar 

  25. Li N, Qi L, Shen Y, Li YP, Chen Y (2013) Appl Mater Interfaces 5:12441–12448

    Article  CAS  Google Scholar 

  26. Yuan WZ, Wang JJ (2014) RSC Adv 4:38855–38858

    Article  CAS  Google Scholar 

  27. An YM, Liu T, Tian R, Liu SX, Han YN, Wang QQ, Sheng WJ (2015) React Funct Polym 94:1–8

    Article  CAS  Google Scholar 

  28. Wellert S, Kesal D, Schön S, Rv K, Gawlitza K (2015) Langmuir 31:2202–2210

    Article  CAS  Google Scholar 

  29. Wang QQ, Liu SX, Sheng WJ, Guang N, Li X (2015) Macromol Res 23:607–617

    Article  CAS  Google Scholar 

  30. Endres T, Zheng MY, Kılıς A, Turowska A, Beck-Broichsitter M, Renz H, Merkel OM, Kissel T (2014) Mol Pharm 11:1273–1281

    Article  CAS  Google Scholar 

  31. Hyun H, Kim YH, Song IB, Lee JW, Kim MS, Khang G, Park K, Lee HB (2007) Biomacromolecules 8:1093–1100

    Article  CAS  Google Scholar 

  32. Yin GZ, Chen GX, Zhou Z, Li QF (2015) RSC Adv 5:33356–33363

    Article  CAS  Google Scholar 

  33. Lin GY, Cosimbescu L, Karin NJ, Gutowska A, Tarasevich BJ (2013) J Mater Chem B 1:1249–1255

    Article  CAS  Google Scholar 

  34. Zhang K, Wang Y, Zhu WP, Li XD, Shen ZQ (2012) J Polym Sci Part A: Polym Chem 50:2045–2052

    Article  CAS  Google Scholar 

  35. Chang LL, Liu JJ, Zhang JH, Deng LD, Dong AJ (2013) Polym Chem 4:1430–1438

    Article  CAS  Google Scholar 

  36. Guo ST, Qiao Y, Wang WW, He HY, Deng LD, Xing JF, Xu JQ, Liang XJ, Dong AJ (2010) J Mater Chem 20:6935–6941

    Article  CAS  Google Scholar 

  37. Guo ST, Wang WW, Deng LD, Xing JF, Dong AJ (2010) Macromol Chem Phys 211:1572–1578

    Article  CAS  Google Scholar 

  38. Cheng R, Wang XY, Chen W, Meng FH, Deng C, Liu HY, Zhong ZY (2012) J Mater Chem 22:11730–11738

    Article  CAS  Google Scholar 

  39. Lenoir S, Riva R, Lou X, Detrembleur C, Jérôme R, Lecomte P (2004) Macromolecules 37:4055–4061

    Article  CAS  Google Scholar 

  40. Samad AA, Bakkour Y, Fanny C, Omar FE, Coudane J, Nottelet B (2015) Polym Chem 6:5093–5102

    Article  Google Scholar 

  41. Peng LJ, Liu T, Liu SX, Han YN, Li X, Guang N, Sheng WJ (2015) J Polym Res 22:126

    Article  Google Scholar 

  42. Cui QL, Wu FP, Wang EJ (2011) J Phys Chem B 115:5913–5922

    Article  CAS  Google Scholar 

  43. Wilhelm M, Zhao CL, Wang YC, Xu RL, Winnik MA (1991) Macromolecules 24:1033–1040

    Article  CAS  Google Scholar 

  44. Ghosha K, Pan Z, Guan E, Ge SR, Liu YJ, Nakamurac T, Ren XD, Rafailovichb M, RAF C (2007) Biomaterials 28:671–679

    Article  Google Scholar 

  45. Jin NX, Woodcock JW, Xue CM, O’Lenick TG, Jiang XG, Jin S, Dadmun MD, Zhao B (2011) Macromolecules 44:3556–3566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the financial support from the Nation Science Foundation of China (20973106), the Fundamental Research Funds for the Central Universities of China (GK201301004) and the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT_14R33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Li, X., Guang, N. et al. Novel amphiphilic temperature responsive graft copolymers PCL-g-P(MEO2MA-co-OEGMA) via a combination of ROP and ATRP: synthesis, characterization, and sol-gel transition. J Polym Res 23, 141 (2016). https://doi.org/10.1007/s10965-016-1036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1036-z

Keywords

Navigation