Skip to main content
Log in

Synthesis and sol-gel transition of novel temperature responsive aba triblock-graft copolymers based on PCL and PEG analogues

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Novel hydrophilic, temperature responsive, and biodegradable ABA tribl°Ck-graft copolymers, [poly(ɛ-caprolactone)-g-poly(2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methacrylate)]-b-poly(ethylene glycol)-b-[poly(-caprolactone)-g-poly(2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methacrylate)] ([PCL-g-P(MEO2MA-co-OEGMA)]-b-PEG-b-[PCL-g-P(MEO2MA-co-OEGMA)]) (tBGs), were synthesized via a combination of ring-opening polymerization (ROP) of ɛ-caprolactone (ɛCL) and α-chloro-ɛ-caprolactone (αClɛCL) in the presence of PEG and atom transfer radical polymerization (ATRP) of MEO2MA and OEGMA. Temperature responsive P(MEO2MA-co-OEGMA) graft chains on the hydrophobic PCL block of PCL-b-PEG-b-PCL not only improved the solubility of PCL-b-PEG-b-PCL in water, but also endowed it with temperature sensitivity. The synthesized temperature responsive triblock-graft copolymers formed well-defined core-shell micelles as the temperature was above their LCST (ca. 35 °C), with hydrophilic PEG block as shell, P(MEO2MA-co-OEGMA) graft chains on the PCL block and hydrophobic PCL block aggregates as core. The micellization induced by temperature for the tBGs in aqueous solutions had been investigated by transmittance measurement, laser particle size measurement, 1HNMR in D2O, DLS and TEM. For a given tBG5 aqueous solution (30 wt%), a weak hydrogel was available at 35 °C, and its sol-gel transition temperature gradually decreased with increasing concentration. In addition, the tBG5 hydrogels loaded with anethole were used for hydrophobic drug release, and in vitro the sustained release of anethole from the tBG5 hydrogels was examined, which is a significant for anethole for their biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. M. Li, Y. Y. Wang, J. M. Chen, Y. N. Wang, J. B. Ma, and J. L. Wu, ACS Appl. Mater. Interfaces, 6, 3640 (2014).

    Article  CAS  Google Scholar 

  2. M. H. Park, M. K. Joo, B. G. Choi, and B. Jeong, Acc. Chem. Res., 45, 424 (2012).

    Article  CAS  Google Scholar 

  3. L. Yu, Z. Zhang, H. Zhang, and D. Ding, Biomacromolecules, 11, 2169 (2010).

    Article  CAS  Google Scholar 

  4. C. H. Wang, Y. S. Hwang, P. R. Chiang, C. R. Shen, W. H. Hong, and G. H. Hsiue, Biomacromolecules, 13, 40 (2012).

    Article  CAS  Google Scholar 

  5. Y. M. Kang, S. H. Lee, J. Y. Lee, J. S. Son, B. S. Kim, B. Lee, H. J. Chun, B. H. Min, J. H. Kim, J. H. Kim, and M. S. Kim, Biomaterials, 31, 2453 (2010).

    Article  CAS  Google Scholar 

  6. C. T. Huynh, M. K. Nguyen, and D. S. Lee, Macromolecules, 44, 6629 (2011).

    Article  CAS  Google Scholar 

  7. S. H. Park, B. G. Choi, M. K. Joo, D. K. Han, Y. S. Sohn, and B. Jeong, Macromolecules, 41, 6486 (2008).

    Article  CAS  Google Scholar 

  8. S. J. Bae, J. M. Suh, Y. S. Sohn, Y. H. Bae, S. W. Kim, and B. Jeong, Macromolecules, 38, 5260 (2005).

    Article  CAS  Google Scholar 

  9. S. Z. Fu, G. Guo, C. Y. Gong, S. Zeng, H. Liang, X. N. Zhang, X. Zhao, Y. Q. Wei, and Z. Y. Qian, J. Phys. Chem. B, 113, 16518 (2009).

    Article  CAS  Google Scholar 

  10. J. S. Yoo, M. S. Kim, and D. S. Lee, Macromol. Res., 14, 117 (2006).

    Article  CAS  Google Scholar 

  11. X. Xu, J. Song, K. Wang, Y. C. Gu, F. Luo, X. H. Tang, P. Xie, and Z. Y. Qian, Macromol. Res., 21, 870 (2013).

    Article  CAS  Google Scholar 

  12. J. F. Lutz, Ö. Akdemir, and A. Hoth, J. Am. Chem. Soc, 128, 13046 (2006).

    Article  CAS  Google Scholar 

  13. T. Cai, M. Marquez, and Z. Hu, Langmuir, 23, 8663 (2007).

    Article  CAS  Google Scholar 

  14. J. F. Lutz and A. Hoth, Macromolecules, 39, 893 (2006).

    Article  CAS  Google Scholar 

  15. J. F. Lutz, J. Andrien, S. Üzgün, C. Rudolph, and S. Agarwal, Macromolecules, 40, 8540 (2007).

    Article  CAS  Google Scholar 

  16. J. F. Lutz, J. Polym. Sci., Part A: Polym. Chem., 46, 3459 (2008).

    Article  CAS  Google Scholar 

  17. S. T. Sun and P. Y. Wu, Macromolecules, 46, 236 (2013).

    Article  CAS  Google Scholar 

  18. A. Cappelli, S. Galeazzi, G. Giuliani, M. Anzini, M. Grassi, R. Lapasin, G. Grassi, R. Farra, B. Dapas, M. Aggravi, A. Donati, L. Zetta, A. C. Boccia, F. Bertini, F. Samperi, and S. Vomero, Macromolecules, 42, 2368 (2009).

    Article  CAS  Google Scholar 

  19. N. Fechler, N. Badi, K. Schade, S. Pfeifer, and J. F. Lutz, Macromolecules, 42, 33 (2009).

    Article  CAS  Google Scholar 

  20. T. Cai, M. Marquez, and Z. B. Hu, Langmuir, 23, 8663 (2007).

    Article  CAS  Google Scholar 

  21. B. L. Peng, N. Grishkewich, Z. L. Yao, X. Han, H. L. Liu, and K. C. Tam, ACS Macro Lett, 1, 632 (2012).

    Article  CAS  Google Scholar 

  22. R. Nirmala, W. Baek, R. Navamathavan, T. W. Kim, D. Kalpana, M. Park, H. Y. Kim, and S. J. Ma, Macromol. Res., 22, 139 (2014).

    Article  CAS  Google Scholar 

  23. S. A. Park, J. B. Lee, Y. E. Kim, and J. E. Kim, J. H. Lee, J. W. Shin, I. K. Kwon, and W. D. Kim, Macromol. Res., 22, 882 (2014).

    Article  CAS  Google Scholar 

  24. M. A. Alvarez-Perez, V. Guarino, V. Cirillo, and L. Ambrosio, Biomacromolecules, 11, 2238 (2010).

    Article  CAS  Google Scholar 

  25. S. K. Patel, A. Lavasanifar, and P. Choi, Biomacromolecules, 10, 2584 (2009).

    Article  CAS  Google Scholar 

  26. T. K. Dash and V. Badireenath Konkimalla, Mol. Pharmaceutics, 9, 2365 (2012).

    Article  CAS  Google Scholar 

  27. S. Y. Nie, Y. Sun, W. J. Lin, W. S. Wu, S. D. Guo, and Y. Qian, J. Phys. Chem. B, 117, 13688 (2013).

    Article  CAS  Google Scholar 

  28. Z. L. Tyrrel, Y. Q. Shen, and M. Radosz, J. Phys. Chem. C, 115, 11951 (2011).

    Article  Google Scholar 

  29. Y. Hu, Z. Jiang, R. Chen, W. Wu, and X. Q. Jiang, Biomacromolecules, 11, 481 (2010).

    Article  CAS  Google Scholar 

  30. J. Jin, D. G. Wu, P. C. Sun, L. Liu, and H. Y. Zhao, Macromolecules, 44, 2016 (2011).

    Article  CAS  Google Scholar 

  31. C. Y. Gong, S. Shi, X. H. Wang, Y. J. Wang, S. Z. Fu, P. W. Dong, L. J. Chen, X. Zhao, Y. Q. Wei, and Z. Y. Qian, J. Phys. Chem. B, 113, 10183 (2009).

    Article  CAS  Google Scholar 

  32. Y. M. Wan, Z. H. Gan, and Z. B. Li, Polym. Chem, 5, 1720 (2014).

    Article  CAS  Google Scholar 

  33. F. S. Gungor and B. Kiskan, React. Funct. Polym., 75, 51 (2014).

    Article  CAS  Google Scholar 

  34. R. J. Su, H. W. Yang, Y. L. Leu, M. Y. Hua, and R. S. Lee, React. Funct. Polym., 72, 36 (2012).

    Article  CAS  Google Scholar 

  35. J. Suksiriworapong, K. Sripha, and V. B. Junyaprasert, Polymer, 51, 2286 (2010).

    Article  CAS  Google Scholar 

  36. R. Riva, S. Schmeits, R. Jérôme, and P. Lecomte, Macromolecules, 40, 796 (2007).

    Article  CAS  Google Scholar 

  37. S. Lenoir, R. Riva, X. Lou, C. Detrembleur, R. Jérôme, and P. Lecomte, Macromolecules, 37, 4055 (2004).

    Article  CAS  Google Scholar 

  38. A. M. Elsen, R. Nicolaÿ, and K. Matyjaszewski, Macromolecules, 44, 1752 (2011).

    Article  CAS  Google Scholar 

  39. N. X. Jin, H. Zhang, S. Jin, M. D. Dadmun, and B. Zhao, J. Phys. Chem. B, 116, 3125 (2012).

    Article  CAS  Google Scholar 

  40. X. M. Li, Y. Y. Wang, J. M. Chen, Y. N. Wang, J. B. Ma, and G. L.Wu, ACS Appl. Mater. Interfaces, 6, 3640 (2014).

    Article  CAS  Google Scholar 

  41. I. Idziak, D. Avoce, D. Lessard, D. Gravel, and X. X. Zhu, Macromolecules, 32, 1260 (1999).

    Article  CAS  Google Scholar 

  42. K. J. Zhou, Y. J. Lu, J. F. Li, L. Shen, G. Z. Zhang, Z. W. Xie, C. Wu, Macromolecules, 41, 8927 (2008).

    Article  CAS  Google Scholar 

  43. X. B. Liu, S. K. Ye, J. Luo, and C. Wu, Macromolecules, 45, 4830 (2012).

    Article  CAS  Google Scholar 

  44. Q. L. Cui, F. P. Wu, and E. J. Wang, J. Phys. Chem. B, 115, 5913 (2011).

    Article  CAS  Google Scholar 

  45. G. B. H. Chua, P. J. Roth, H. T. T. Duong, T. P. Davis, and A. B. Lowe, Macromolecules, 45, 1362 (2012).

    Article  CAS  Google Scholar 

  46. Y. F. Zhou, D. Y. Yan, W. Y. Dong, and Y. Tian, J. Phys. Chem. B, 111, 1262 (2007).

    Article  CAS  Google Scholar 

  47. P. J. Roth, T. P. Davis, and A. B. Lowe, Macromolecules, 45, 3221 (2012).

    Article  CAS  Google Scholar 

  48. Z. B. Li, Z. X. Zhang, K. L. Liu, X. P. Ni, and J. Li, Biomacromolecules, 13, 3977 (2012).

    CAS  Google Scholar 

  49. J. F. Lutz, K. Weichenhan, Ö. Akdemir, and A. Hoth, Macromolecules, 40, 2503 (2007).

    Article  CAS  Google Scholar 

  50. F. Xu, T. T. Yan, and Y. L. Luo, Macromol. Res., 19, 1287 (2011).

    Article  CAS  Google Scholar 

  51. T. G. O’Lenick, X. G. Jiang, and B. Zhao, Langmuir, 26, 8787 (2010).

    Article  Google Scholar 

  52. Y. L. Cheng, C. L. He, C. H. Xiao, J. X. Ding, X. L. Zhuang, Y. B. Huang, and X. S. Chen, Biomacromolecules, 13, 2053 (2012).

    Article  CAS  Google Scholar 

  53. S. Z. Fu, G. Guo, C. Y. Gong, S. Zeng, H. Liang, F. Luo, X. N. Zhang, X. Zhao, Y. Q. Wei, and Z. Y. Qian, J. Phys. Chem. B, 113, 16518 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, S., Sheng, W. et al. Synthesis and sol-gel transition of novel temperature responsive aba triblock-graft copolymers based on PCL and PEG analogues. Macromol. Res. 23, 607–617 (2015). https://doi.org/10.1007/s13233-015-3089-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3089-y

Keywords

Navigation