Skip to main content
Log in

Sol–gel transition of novel temperature responsive ABA triblock copolymer P(MEO2MA-co-HMAM)-b-PEG-b-P(MEO2MA-co- HMAM)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A well-defined temperature responsive ABA triblock copolymer, poly(2-(2-methoxyethoxy) ethyl methacrylate-co-N-hydroxymethyl acrylamide)-b- poly(ethylene glycol)-b-poly (2-(2-methoxyethoxy) ethyl methacrylate-co-N- hydroxymethyl acrylamide) [P(MEO2MA-co-HMAM)-b-PEG-b-P(MEO2MA-co- HMAM)], was synthesized by atom transfer radical polymerization (ATRP). The synthesized triblock copolymer was characterized by 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy and Gel Permeation Chromatography (GPC). The aqueous solution phase behaviors of the triblock copolymers were investigated by UV transmittance measurements, surface tension measurement, laser particle size and viscosity analysis. The micellization of temperature responsive triblock copolymer was investigated by fluorescence probe technique, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that the molecular weight of the poly(ethylene glycol) (PEG), the N-hydroxymethylacrylamide (HMAM) content, and the degree of polymerization (DP) of the P(MEO2MA-co- HMAM) block for the synthesized triblock copolymers could all affect the lower critical solution temperature (LCST) of the triblock copolymer aqueous solution. The higher the molecular weight of the PEG and the HMAM content for a given triblock copolymer are, the higher the LCST of its aqueous solution. The higher the DP of the P(MEO2MA-co-HMAM) block is, the lower the LCST of the copolymer aqueous solution. Sol–gel transition temperature (T sol-gel) for the triblock copolymer determined by vial inversion test further indicated that it is dependent on the molecular weights of the PEG, the DP of the P(MEO2MA-co-HMAM) blocks and the concentration of the copolymer aqueous solution. Copolymer hydrogels loaded with bovine serum albumin (BSA) were used for the release study. The results revealed that 1) the hydrogels had sustained release for the BSA, 2) the release rate for the BSA is dependent of the length of the PEG chain, and 3) the longer the PEG chain is, the faster the release rate of the hydrogel for the BSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 4
Fig. 14

Similar content being viewed by others

References

  1. Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    Article  CAS  Google Scholar 

  2. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Article  CAS  Google Scholar 

  3. Lee H, Pietrasik J, Sheiko SS, Matyjaszewski K (2010) Stimuli-responsive molecular brushes. Prog Polym Sci 35:24–44

    Article  CAS  Google Scholar 

  4. Chen T, Ferris R, Zhang JM, Ducker R, Zauscher S (2010) Stimulus-responsive polymer brushes on surfaces: Transduction mechanisms and applications. Prog Polym Sci 35:94–112

    Article  Google Scholar 

  5. Lee H, Wu W, Oh JK, Mueller L, Sherwood G, Peteanu L, Kowalewski T, Matyjaszewski K (2007) Light-induced reversible formation of polymeric micelles. Angrew Chem Int Et 46:2453–2457

    Article  CAS  Google Scholar 

  6. Magnusson JP, Khan A, Pasparakis G, Saeed AO, Wang W, Alexander C (2008) Ion-sensitive “isothermal” responsive polymers prepared in water. J Am Chem Soc 130(33):10852–10853

    Article  CAS  Google Scholar 

  7. Tai HY, Wang WX, Vemonden T, Heath F, Hennink WE, Alexander C, Shakesheff KM, Howdle SM (2009) Thermoresponsive and photocrosslinkable PEGMEMA-PPGMA- EGDMA copolymers from a one-step ATRP Synthesis. Biomacrolecules 10(4):822–828

    Article  CAS  Google Scholar 

  8. Liu XM, Pramoda KP, Yang YY, Chow SY, He CB (2004) Cholesteryl-grafted functional amphiphilic poly(N-isopropylacrylamide-co-N-hydroxylmethylacrylamide): synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials 25:2619–2628

    Article  CAS  Google Scholar 

  9. Cheng C, Wei H, Shi BX, Cheng H, Li C, Gu ZW, Cheng SX, Zhang XZ, Zhuo RX (2008) Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target. Biomaterials 29:497–505

    Article  CAS  Google Scholar 

  10. Cui QL, Wu FP, Wang E (2011) Thermosensitive behavior of poly(ethylene glycol)-based block copolymer (PEG-b-PADMO) controlled via self-assembled microstructure. J Phys Chem B 115:5913–5922

    Article  CAS  Google Scholar 

  11. Vancoillie G, Frank D, Hoogenboom R (2014) Thermoresponsive poly(oligo ethylene glycol acrylates). Prog Polym Sci 39:1074–1095

    Article  CAS  Google Scholar 

  12. Jiang XZ, Zhang GY, Narain R, Liu SY (2009) Fabrication of two types of shell-cross-linked micelles with “inverted” structures in aqueous solution from schizophrenic water-soluble ABC triblock copolymer via click chemistry. Langmuir 25(4):2046–2054

    Article  CAS  Google Scholar 

  13. Cheng C, Wei H, Zhu JL, Chang C, Cheng H, Li C, Cheng SX, Zhang XZ, Zhuo RX (2008) Functionalized thermoresponsive micelles self-assembled from Biotin-PEG-b-P(NIPAAm -co-HMAAm)-b-PMMA for tumor cell target. Bioconjug Chem 19(6):1194–1201

    Article  CAS  Google Scholar 

  14. O’Lenick TG, Jiang XG, Zhao B (2008) Thermosensitive aqueous gels with tunable sol–gel transition temperatures from thermo- and pH-responsive hydrophilic ABA triblock copolymer. Langmuir 26(11):8787–8796

    Article  Google Scholar 

  15. O’Lenick TG, Jin NX, Woodcock JW, Zhao B (2011) Rheological properties of aqueous micellar gels of a thermo- and pH-sensitive ABA triblock copolymer. J Phys Chem B 115:2870–2881

    Article  Google Scholar 

  16. Siegwart DJ, Oh JK, Matyjaszewski K (2012) ATRP in the design of functional materials for biomedical applications. Prog Polym Sci 37:18–37

    Article  CAS  Google Scholar 

  17. Tang YF, Zhang SM, Wang M, Zhu JL, Sun TM, Jiang GQ (2014) A glucose-based diblock copolymer: synthesis, characterization and its injectable/temperature-sensitive behaviors. J Polym Res 21:390–397

    Article  Google Scholar 

  18. Liu X, Ni PH, He JL, Zhang MZ (2010) Synthesis and micellization of pH/temperature- responsive double-hydrophilic diblock copolymers polyphosphoester-block- poly[2-(dimethylamino)ethyl methacrylate] prepared via ROP and ATRP. Macromolecules 43(10):4771–4781

    Article  CAS  Google Scholar 

  19. Qiao ZY, Du FS, Zhang R, Liang DH, Li ZC (2010) Biocompatible thermoresponsive polymers with pendent oligo(ethylene glycol) chains and cyclic ortho ester groups. Macromolecules 43(15):6485–6494

    Article  CAS  Google Scholar 

  20. Jin NX, Zhang H, Jin S, Dadmun MD, Zhao B (2012) Shifting sol–gel phase diagram of a doubly thermosensitive hydrophilic diblock copolymer poly(methoxytri(ethylene glycol) acrylate-co-acrylic acid)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) in aqueous solution. Macromolecules 45:4790–4800

    Article  CAS  Google Scholar 

  21. Li XM, Wang YY, Chen JM, Wang YN, Ma JB, Wu GL (2014) Controlled release of protein from biodegradable multi-sensitive injectable poly(ether-urethane) hydrogel. ACS Appl Mater Interfaces 6:3640–3647

    Article  CAS  Google Scholar 

  22. Wei H, Wu DQ, Li Q, Chang C, Zhou JP, Zhang XZ, Zhuo RX (2008) Preparation of shell cross-linked thermoresponsive micelles as well as hollow spheres based on P(NIPAAm-co- HMAAm-co-MPMA)-b-PCL. J Phys Chem C 112(39):15329–15334

    Article  CAS  Google Scholar 

  23. Wei H, Chen WQ, Chang C, Cheng C, Cheng SX, Zhang XZ, Zhuo RX (2008) Synthesis of star block, thermosensitive poly(L-lactide)-star block-poly(N-isopropylacrylamide-co- N-hydroxymethylacrylamide) copolymers and their self-assembled micelles for controlled release. J Phys Chem C 112(8):2888–2894

    Article  CAS  Google Scholar 

  24. Hussain H, Mya KY, He CB (2008) Self-assembly of brush-like poly[poly(ethylene glycol) methyl ether methacrylate] synthesized via aqueous atom transfer radical polymerization. Langmuir 24(23):13279–13286

    Article  CAS  Google Scholar 

  25. Chen JC, Liu MZ, Gong HH, Huang YJ, Chen C (2011) Synthesis and self-assembly of thermoresponsive PEG-b-PNIPAM-b-PCL ABC triblock copolymer through the combination of atom transfer radical polymerization, ring-opening polymerization, and click chemistry. J Phys Chem B 115:14947–14955

    Article  CAS  Google Scholar 

  26. Chaw CS, Chooi KW, Liu XM, Liu XM, Tan CW, Wang L, Yang YY (2004) Thermally responsive core-shell nanoparticles self-assembled from cholesteryl end-capped and grafted polyacrylamides: drug incorporation and in vitro release. Biomaterials 25:4297–4308

    Article  CAS  Google Scholar 

  27. Ding H, Wu F, Huang YA, Zhang ZR, Nie Y (2006) Synthesis and characterization of temperature-responsive copolymer of PELGA modified poly(N-isopropylacrylamide). Polymer 47:1575–1583

    Article  CAS  Google Scholar 

  28. Lutz JF (2008) Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J Polym Sci Part A Polym Chem 46:3459–3470

    Article  CAS  Google Scholar 

  29. Peng BL, Grishkewich N, Yao ZL, Han X, Liu HL, Tam KC (2012) Self-assembly behavior of thermoresponsive oligo(ethylene glycol) methacrylates random copolymer. ACS Macro Lett 1:632–635

    Article  CAS  Google Scholar 

  30. Yu WN, Liu SX, Wang HM, Tian R (2012) Synthesis and micellization of P(NIPAM-co- HMAM)-b-PEO-b-P(NIPAM-co-HMAM) triblock copolymers. J Polym Res 19:9989–9995

    Article  Google Scholar 

  31. Kelarakis A, Tang T, Havredaki V, Viras K, Hamley IW (2008) Micellar and surface properties of a poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) copolymer in aqueous solution. J Colloid Interface Sci 320:70–73

    Article  CAS  Google Scholar 

  32. Kumar AC, Erothu H, Bohidar HB, Mishra AK (2011) Bile-salt-induced aggregation of poly(N-isopropylacrylamide) and lowering of the lower critical solution temperature in aqueous solutions. J Phys Chem B 115(3):433–439

    Article  CAS  Google Scholar 

  33. Liu XM, Yang YY, Leong KW (2003) Thermally responsive polymeric micellar nanoparticles self-assembled from cholesteryl end-capped random poly(N-isopropylacrylamide-co- N, N-dimethylacrylamide): synthesis, temperature-sensitivity, and morphologies. J Colloid Interface Sci 266:295–303

    Article  CAS  Google Scholar 

  34. Giacomelli C, Men LL, Borsali R (2006) Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments. Biomacromolecules 7(3):817–828

    Article  CAS  Google Scholar 

  35. Zhang L, Liu WG, Lin L, Chen DY, Stenzel MH (2008) Degradable disulfide core-cross- linked micelles as a drug delivery system prepared from vinyl functionalized nucleosides via the RAFT process. Biomacromolecules 9(11):3321–3331

    Article  CAS  Google Scholar 

  36. Yu L, Chang GT, Zhang H, Ding JD (2007) Temperature-induced spontaneous sol–gel transitions of poly(D, L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D, L- lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J Polym Sci A Polym Chem 45:1122–1133

    Article  CAS  Google Scholar 

  37. Shim WS, Yoo JS, Bae YH, Lee DS (2005) Novel injectable pH and temperature sensitive block copolymer hydrogel. Biomacromolecules 6(6):2930–2934

    Article  CAS  Google Scholar 

  38. Hwang MJ, Suh JM, Bae YH, Kim SW, Jeong B (2005) Caprolactonic poloxamer analog: PEG-PCL-PEG. Biomacromolecules 6(2):885–890

    Article  CAS  Google Scholar 

  39. Fu SZ, Guo G, Gong CY, Zeng S, Liang H, Luo F, Zhang XN, Zhao X, Wei YQ, Qian ZY (2009) Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol) -poly(ε-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites. J Phys Chem B 113(52):16518–16525

    Article  CAS  Google Scholar 

  40. Qiao MX, Chen DW, Ma XC, Hu HY (2006) Sustained release of bee venom peptide from biodegradable thermosensitive PLGA-PEG-PLGA triblock copolymer-based hydrogels in vitro. Pharmazie 61(3):199–202

    CAS  Google Scholar 

  41. Shim WS, Kim SW, Lee DS (2006) Sulfonamide-based pH- and temperature-sensitive biodegradable block copolymer hydrogels. Biomacromolecules 7(6):1935–1941

    Article  CAS  Google Scholar 

  42. Loh XJ, Goh SH, Li J (2007) New biodegradable thermogelling copolymers having very low gelation concentrations. Biomacromolecules 8(2):585–593

    Article  CAS  Google Scholar 

  43. Park MH, Joo MK, Choi BH, Jeong B (2012) Biodegradable thermogels. Acc Chem Res 45(3):424–433

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Nation Science Foundation of China (20973106), the Fundamental Research Funds for the Central Universities of China (GK201301004) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT_14R33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Liu, T., Liu, S. et al. Sol–gel transition of novel temperature responsive ABA triblock copolymer P(MEO2MA-co-HMAM)-b-PEG-b-P(MEO2MA-co- HMAM). J Polym Res 22, 126 (2015). https://doi.org/10.1007/s10965-015-0772-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0772-9

Keywords

Navigation