Skip to main content
Log in

High dielectric permittivity and low loss in PVDF filled by core-shell Zn@ZnO particles

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, metal-semiconductor Zn@ZnO core-shell particles were prepared by the heat treatment of raw Zn powder under air atmosphere, and the prepared Zn@ZnO particles were incorporated into poly(vinylidene fluoride) (PVDF) to obtain high dielectric permittivity polymer. The results indicate that the Zn@ZnO particles remarkably increased the dielectric constant of the PVDF composites compared with the raw Zn/PVDF due to the duplex interfacial polarizations induced by ZnO-Zn interface and ZnO-PVDF interface. Moreover, the dielectric permittivity of the Zn@ZnO/PVDF composites can be further optimized by adjusting the thickness of ZnO shell. The dielectric loss and conductivity were still remained at low acceptable level owing to the presence of ZnO shell between Zn core and PVDF matrix which serves as an interlayer between the Zn cores preventing them from contacting with each other. The developed Zn@ZnO/PVDF polymer composites with high dielectric constant and low loss are potential for embedded capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim YH, Kim HJ, Koh JH (2011) Fabrication of BaTiO3-PTFE composite film for embedded capacitor employing aerosol deposition. Ceram Int 37:1859–1864

    Article  CAS  Google Scholar 

  2. Zhou WY, Yu DM (2013) Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites. J Mater Sci 48:7960–7968

    Article  CAS  Google Scholar 

  3. Zhang Y, Wang Y, Deng Y, Bai JB (2012) High dielectric constant and low loss in polymer composites filled by self-passivated zinc particles. Mater Lett 72:9–11

    Article  CAS  Google Scholar 

  4. Li Y, Huang XY, Hu ZW, Jiang KP (2011) Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon Carbide three-phase nanocomposites. Appl Mater Interfaces 3(11):4396–4403

    Article  CAS  Google Scholar 

  5. Zhang Y, Yang Y, Deng Y (2012) Excellent dielectric properties of anisortropic polymer composites filled with parallel aligned zinc flake. Appl Phys Lett 101:192904

    Article  Google Scholar 

  6. Xie LY, Huang XY, Jiang PK (2013) Core@double-shell structured BaTiO3-polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. J Phy Chem 117:22525–22537

    CAS  Google Scholar 

  7. Xie LY, Huang XY, Jiang PK (2013) Coree-shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. Appl Mater Interfaces 5:1747–1756

    Article  CAS  Google Scholar 

  8. Zhang Y, Wang Y, Deng Y, Bai JB (2012) Enhanced dielectric properties of ferroelectric polymer composites induced by metal-semiconductoor Zn-ZnO core-shell structure. Appl Mater Interfaces 4:65–68

    Article  CAS  Google Scholar 

  9. Wu C, Huang XY, Jiang PK (2011) Morphology-controllable graphene-TiO2 nanorod hybrid nanostructures for polymer composites with high dielectric performance. J Mater Chem 21:17729–17736

    Article  CAS  Google Scholar 

  10. Kobayashi Y, Tanase T, Tabata T (2008) Fabrication and dielectric properties of the BaTiO3-polymer nano-composite thin films. J Eur Ceram Soc 28:117–122

    Article  CAS  Google Scholar 

  11. Zak AK, Gan WC, Velayutham TS (2011) Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin film. Ceram Int 37:1653–1660

    Article  CAS  Google Scholar 

  12. Wu W, Huang XY, Jiang PK (2012) Novel three-dimensional zinc oxide superstrutures for high dielectric constant polymer composites capable of withstanding high electric field. J Phy Chem 116:24887–24895

    CAS  Google Scholar 

  13. Thomas P, Varughese KT, Varma KBR (2010) Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos Sci Technol 70:539–545

    Article  CAS  Google Scholar 

  14. Hu T, Juuti J, Jantunen H (2007) Dielectric properties of BST/polymer composite. J Eur Ceram Soc 27:3997–4001

    Article  CAS  Google Scholar 

  15. Zhou WY, Zuo J, Ren WY (2012) Thermal conductivity and dielectric properties of Al-PVDF composites. Composites Part A 43(1):658–664

    Article  CAS  Google Scholar 

  16. Huang XY, Kim C, Jiang PK (2009) Influence of aluminum nanoparticle surface treatment on the electrical properties of polyethylene composites. J Appl Phys 105:014105

    Article  Google Scholar 

  17. Goyal RK, Kambale KR, Nene SS (2011) Fabrication, thermal and electrical properties of polyphenylene sulphide/copper composites. Mater Chem Phys 128:114–120

    Article  CAS  Google Scholar 

  18. Uddin MJ, Chaudhri B, Pramanik K (2012) Black tea leaf extract derived Ag nanoparticle-PVA composite film: structural and dielectric properties. Mater Sci Eng 177:1741–1747

    Article  CAS  Google Scholar 

  19. Qi L, Lee BI, Chen S (2005) High dielectric constant silver epoxy composites as embedded dielectrics. Adv Mater 17(14):1777–1781

    Article  CAS  Google Scholar 

  20. Shen Y, Lin YH, Li M, Nan CW (2007) High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv Mater 19(10):1418–1422

    Article  CAS  Google Scholar 

  21. Xu JW, Wong CP (2007) Characterization and properties of an organic dielectric nanocomposites for embedded decoupling capacitor applications. Compos Part A 38(5):13–19

    Article  Google Scholar 

  22. Min C, Yu D M, Cao J Y, etc (2013) A graphite nanoplatelet/epoxy composites with high dielectric constant and high thermal conductivity. Carbon 55:116–125

  23. Araby S, Zhang LQ, Kuan HC, Maa J (2013) A novel approach to electrically and thermally conductive elastomers using graphene. Polymer 54(14):3663–3670

    Article  CAS  Google Scholar 

  24. Sengupta R, Bhattacharya M, Bandyopadhyay S (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670

    Article  CAS  Google Scholar 

  25. Cai DY, Song M (2010) Recent advance in functionalized graphene/polymer nanocomposites. J Mater Chem 20(37):7906–7915

    Article  CAS  Google Scholar 

  26. Li B, Zhong WH (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46(17):5595–5614

    Article  CAS  Google Scholar 

  27. Song PA, Liu LN, Fu SY (2013) Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites. Nanotechnology 24(12):125704–125712

    Article  Google Scholar 

  28. Cui W, Du FP, Zhao JC (2011) Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon 49(2):495–500

    Article  CAS  Google Scholar 

  29. Wu C, Huang XY, Jiang PK (2012) TiO2-nanorod decorated carbon nanotubes for high-permittovity and low-dilelctric-loss polystyrene composites. Compos Sci Technol 72:521–527

    Article  CAS  Google Scholar 

  30. Wu C, Huang XY, Jiang PK (2013) Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5:3847–3855

    Article  CAS  Google Scholar 

  31. Qian R, Yu JH, Jiang PK (2013) Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv 3(38):17373–17379

    Article  CAS  Google Scholar 

  32. Dang ZM, You SS, Zha JW (2010) Effect of shell-layer thickness on dielectric properties in Ag@TiO2 core@shell nanoparticles filled ferroelectric poly(vinylidene fluoride) composites. Phys Status Solidi A 207:739–742

    Article  CAS  Google Scholar 

  33. Zhou YC, Wang H, Xiang F (2011) A poly(vinylidene fluoride) composite with added self-passivated microaluminum and nanoaluminum particles for enhanced thermal conductivity. Appl Phys Lett 98(18):182906

    Article  Google Scholar 

  34. Zhou YC, Wang H (2013) An Al@Al2O3@SiO2/polyimide composite with multilayer coating structure fillers based on self-passivated aluminum cores. Appl Phys Lett 102(13):132901–132904

  35. Zhou YC, Bai YY, Yu K (2013) Excellent thermal conductivity and dielectric properties of polyimide composites filled with silica coated self-passivated aluminum fibers and nanoparticles. Appl Phys Lett 102(25):252903–2521-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Science Foundation of China (No. 51073180, 51577154), the Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology (JZK201301), the Scientific Research Program Funded by Shaanxi Provincial Education Commission (Program NO.14JK1485), and the Foundation for Key Program of Ministry of Education, China (212175).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenying Zhou or Qingguo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Dong, L., Sui, X. et al. High dielectric permittivity and low loss in PVDF filled by core-shell Zn@ZnO particles. J Polym Res 23, 45 (2016). https://doi.org/10.1007/s10965-016-0941-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0941-5

Keywords

Navigation